3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA
Loading...
Authors
Witter, Jeffrey B.
Siler, Drew L.
Faulds, James E.
Hinz, Nicholas H.
Issue Date
2016
Type
Article
Language
Keywords
Geothermal exploration , Conceptual models , 3D geophysical inversion modeling , Gravity data , Bradys geothermal system , GOCAD , VPmg
Alternative Title
Abstract
Three-dimensional geophysical inversion modeling of gravity data has been performed to test the validity of a 3D geologic model constructed for the Bradys geothermal area. Geophysical modeling was implemented in three different ways: (1) fully unconstrained (i.e., no geologic data included)
(2) constrained by the 3D geologic model using homogeneous rock unit densities, and (3) constrained by the 3D geologic model using heterogeneous rock unit densities. We show that the existing 3D geologic model of the Bradys area is broadly consistent with the gravity data. At a more detailed level, however, our analysis suggests that some adjustments to the Bradys 3D geologic model would improve agreement between the observed gravity and the calculated gravity response. The results of the geophysical inversion modeling are important as they serve as a guide to show where and how the boundaries of the 3D geologic model may need to be adjusted to address density excesses and deficiencies. A 3D geologic model that has been independently tested prior to drilling (using a method such as that described in this paper) will be more robust and have less uncertainty than those which have not been tested. Such an approach will facilitate a reduction in drilling risk, lead to more successful drilling programs, and provide valuable geologic input to improve the accuracy of reservoir models.
(2) constrained by the 3D geologic model using homogeneous rock unit densities, and (3) constrained by the 3D geologic model using heterogeneous rock unit densities. We show that the existing 3D geologic model of the Bradys area is broadly consistent with the gravity data. At a more detailed level, however, our analysis suggests that some adjustments to the Bradys 3D geologic model would improve agreement between the observed gravity and the calculated gravity response. The results of the geophysical inversion modeling are important as they serve as a guide to show where and how the boundaries of the 3D geologic model may need to be adjusted to address density excesses and deficiencies. A 3D geologic model that has been independently tested prior to drilling (using a method such as that described in this paper) will be more robust and have less uncertainty than those which have not been tested. Such an approach will facilitate a reduction in drilling risk, lead to more successful drilling programs, and provide valuable geologic input to improve the accuracy of reservoir models.
Description
Citation
Witter, J. B., Siler, D. L., Faulds, J. E., & Hinz, N. H. (2016). 3D geophysical inversion modeling of gravity data to test the 3D geologic model of the Bradys geothermal area, Nevada, USA. Geothermal Energy, 4(1), 14.
Publisher
License
Creative Commons Attribution 4.0 International
Journal
Volume
Issue
PubMed ID
ISSN
2195-9706