A spatialized classification approach for land cover mapping using hyperspatial imagery

No Thumbnail Available

Authors

Zou, Yi
Greenberg, Jonathan A.

Issue Date

2019

Type

Citation

Language

Keywords

Hyperspatial imagery , Image classification , Pattern recognition , Spatialized classification , HPC-Pronghorn

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Maps of classified surface features are a key output from remote sensing. Conventional methods of pixel-based classification label each pixel independently by considering only a pixel's spectral properties. While these purely spectral-based techniques may be applicable to many medium and coarse-scale remote sensing analyses, they may become less appropriate when applied to high spatial resolution imagery in which the pixels are smaller than the objects to be classified. At this scale, there is often higher intra-class spectral heterogeneity than inter-class spectral heterogeneity, leading to difficulties in using purely spectral-based classifications. A solution to these issues is to use not only a pixel's spectral characteristics but also its spatial characteristics. In this study, we develop a generalizable "spatialized" classification approach for high spatial resolution image classification. We apply the proposed approach to map vegetation growth forms such as trees, shrubs, and herbs in a forested ecosystem in the Sierra Nevada Mountains. Our results found that the spatialized classification approach outperformed spectral-only approaches for all cover classes examined, with the largest improvements being in discriminating vegetation classes.

Description

Citation

Zou, Y., & Greenberg, J. A. (2019). A spatialized classification approach for land cover mapping using hyperspatial imagery. Remote Sensing of Environment, 232, 111248.

Publisher

License

In Copyright (All Rights Reserved)

Journal

Volume

Issue

PubMed ID

ISSN

0034-4257

EISSN

Collections