Evapotranspiration from Irrigated Agriculture and Phreatophyte Shrubs in Nevada, and Role of Surface and Groundwater Interactions on Projected Baseflows in Snow Dominated Regions

Loading...
Thumbnail Image

Authors

Huntington, Justin L.

Issue Date

2011

Type

Dissertation

Language

Keywords

Climate Change Impacts on Baseflow , Climate Change Impacts on Watershed Hydrology , Complementary Relationship of Evapotranspiration , Evapotranspiration from Irrigated Agriculture , Groundwater Surface Water Interactions , Integrated Surface and Groundwater Modeling

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Assessments of water resources are becoming more important as population grows and climate warms in the western U.S. and beyond. Accurate assessments of current and future water supplies rely on accurate estimation of the water and energy budget component of evapotranspiration, ET. In this research, a method is adapted and refined to update irrigated agriculture ET and irrigation water requirement estimates for Nevada using recently published standardized methods and detailed soil water balance accounting. Estimates of irrigated agriculture ET and irrigation water requirements are made for several crop types throughout Nevada to evaluate the spatial distribution and magnitude of irrigation water requirements. Additionally, a complementary relationship approach based on near surface boundary layer feedbacks derived from changes in humidity and temperature is applied to estimate ET from phreatophyte shrubs. A combined total of ten years of micrometeorological data collected over phreatophyte shrubs in eastern Nevada are used to evaluate the complementary relationship and refine the approach. Assessing climate change impacts on surface and groundwater interactions in snow dominated watersheds is of great importance for evaluating future water supplies for development and agriculture in Nevada and the western U.S. An integrated surface and groundwater model was constructed for three snow dominated watersheds tributary to Lake Tahoe and Truckee Meadows, Nevada and California, and Global Climate Model (GCM) projections of temperature and precipitation from six different GCM and two carbon emission scenarios are used to develop ensemble predictions of hydrologic impacts, while specifically focusing on impacts to groundwater and surface water interactions. Results of this work indicate that simple and robust models can estimate ET with reasonable accuracy, and a better understanding of climate change impacts on baseflows can be obtained through the use of integrated surface and groundwater models.

Description

Citation

Publisher

License

In Copyright(All Rights Reserved)

Journal

Volume

Issue

PubMed ID

DOI

ISSN

EISSN