Feasibility study of a wind hydro system in remote areas of Nevada
Loading...
Authors
Peck, Michael K.
Issue Date
1977
Type
Thesis
Language
en_US
Keywords
Fossil Fuel Reserves , Power Generation , Methods Of Power Generation , Nuclear Power , Geothermal Power , Solar Power , Wind Power , Hydroelectric Power Generation , Pumped Storage , Alternative Energy Sources , Alternative Energy Utilization Schemes , Base Power , Peaking Power , Peaking Units , Hydroelectric Generators , Auxiliary Reservoirs , Wind Hydro Design , Pollution-free Energy , Compressed Air , Spinning Flywheels , Storage Batteries , Electrolysis Of Water , Pumped Storage Hydroelectric Power System , Wind Energy Conversion Systems , Wind Energy Storage Bank , Mackay Theses and Dissertations Grant Collection
Alternative Title
Abstract
With today's growing concern over dwindling fossil fuel reserves comes more interest in finding new methods of power generation. These new methods must be able to meet our growing energy demand without excessively taxing our shrinking energy reserves. The more well-known of these methods include nuclear, geothermal, solar and wind power. Less well known is a technique applied to hydroelectric power generation called pumped storage. It is not really an alternative energy source but is more accurately described as an alternative energy utilization scheme. Traditionally, hydroelectric facilities have been designed to provide base power, or the bulk of power required by the consumer while relying on thermal back-up generators to provide the peaking power, the short duration, high power levels required at certain intervals during the day. As a way of replacing these peaking units, large scale hydroelectric generators are designed with extra capacity to enable them to drive pumps during the times when daily demand is at a low level. These pumps are used to recharge small auxiliary reservoirs which supply the peaking power. As an alternative to conventional energy sources, the wind hydro design employs a combination of pumped storage and wind power to provide pollution-free energy from an inexhaustible cost-free source. Probably the main reason that wind power has not been developed more than it has is because there is no cheap, reliable way to store the energy produced. Technology is able to provide an assortment of methods: compressed air, spinning flywheels, storage batteries, electrolysis of water (hydrogen storage) and pumped storage. On any kind of a large scale, the pumped storage hydroelectric power system seems to be a cheap, reliable and certainly time tested method of storing energy. In the wind hydro design, wind energy conversion systems (WECS) are used to drive a series of recharge pumps to an upstream reservoir which acts as the wind energy storage bank, releasing water to drive hydroelectric generators according to the needs of the community (see fig. 1). In order to determine if a wind hydro system is a feasible and competitive alternative to conventional power generation methods it is necessary to examine each of the system components.
Description
Online access for this thesis was created in part with support from the Institute of Museum and Library Services (IMLS) administered by the Nevada State Library, Archives and Public Records through the Library Services and Technology Act (LSTA). To obtain a high quality image or document please contact the DeLaMare Library at https://unr.libanswers.com/ or call: 775-784-6945.
Citation
Publisher
University of Nevada, Reno
License
In Copyright(All Rights Reserved)