Low-Dimensional Quaternionic Matrix Groups
Loading...
Authors
Machen, Casey J.
Issue Date
2011
Type
Thesis
Language
en_US
Keywords
Alternative Title
Abstract
We focus on several properties of the Lie groups Sp(n) and SLn(H). We discuss their Lie algebras, the exponential map from the Lie algebras to the groups, as well as when this map is surjective. Since quaternionic multiplication is not commutative, the process of calculating the exponential of a matrix in Sp(n) or SLn(H) is more involved than the process of calculating the exponential of a matrix over the real or complex numbers. We develop processes by which this calculation may be reduced to a simpler problem, and provide an example to illustrate this. Additionally, we discuss properties of these groups such as centers, maximal tori, normalizers of the maximal tori, Weyl groups, and Clifford Algebras.
Description
The University of Nevada, Reno Libraries will promptly respond to removal requests related to content that violates intellectual property laws, data protections, or has been uploaded without creator consent. Takedown notices should be directed to our ScholarWolf team (scholarwolf@library.unr.edu) with information about the object, including its full URL and the nature of your complaint.
Citation
Publisher
License
In Copyright(All Rights Reserved)