Securing a UAV Using Features from an EEG Signal

Loading...
Thumbnail Image

Authors

Singandhupe, Ashutosh Ramlal

Issue Date

2017

Type

Thesis

Language

Keywords

EEG , Security , UAV

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

This thesis focuses on an approach which entails the extraction of Beta component of the EEG (Electroencephalogram) signal of a user and uses his/her EEG beta data to generate a random AES (Advanced Encryption Standard) encryption key. This Key is used to encrypt the communication between the UAVs (Unmanned aerial vehicles) and the ground control station. UAVs have attracted both commercial and military organizations in recent years. The progress in this field has reached significant popularity, and the research has incorporated different areas from the scientific domain. UAV communication became a significant concern when an attack on a Predator UAV occurred in 2009, which allowed the hijackers to get the live video stream. Since a UAVs major function depend on its onboard auto pilot, it is important to harden the system against vulnerabilities. In this thesis, we propose a biometric system to encrypt the UAV communication by generating a key which is derived from Beta component of the EEG signal of a user. We have developed a safety mechanism that gets activated in case the communication of the UAV from the ground control station gets attacked. This system was validated on a commercial UAV under malicious attack conditions during which we implement a procedure where the UAV return safely to an initially deployed "home" position.

Description

Citation

Publisher

License

In Copyright(All Rights Reserved)

Journal

Volume

Issue

PubMed ID

DOI

ISSN

EISSN