Examining Atmospheric and Ecological Drivers of Wildfires, Modeling Wildfire Occurrence in the Southwest United States, and Using Atmospheric Sounding Observations to Verify National Weather Service Spot Forecasts

Loading...
Thumbnail Image

Authors

Nauslar, Nick

Issue Date

2015

Type

Dissertation

Language

Keywords

boosted regression trees , fire weather , monsoon , self organizing maps , synoptic classification , wildfire occurrence

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

This dissertation is comprised of three different papers that all pertain to wildland fire applications. The first paper performs a verification analysis on mixing height, transport winds, and Haines Index from National Weather Service spot forecasts across the United States. The final two papers, which are closely related, examine atmospheric and ecological drivers of wildfire for the Southwest Area (SWA) (Arizona, New Mexico, west Texas, and Oklahoma panhandle) to better equip operational fire meteorologists and managers to make informed decisions on wildfire potential in this region. The verification analysis here utilizes NWS spot forecasts of mixing height, transport winds and Haines Index from 2009-2013 issued for a location within 50 km of an upper sounding location and valid for the day of the fire event. Mixing height was calculated from the 0000 UTC sounding via the Stull, Holzworth, and Richardson methods. Transport wind speeds were determined by averaging the wind speed through the boundary layer as determined by the three mixing height methods from the 0000 UTC sounding. Haines Index was calculated at low, mid, and high elevation based on the elevation of the sounding and spot forecast locations. Mixing height forecasts exhibited large mean absolute errors and biased towards over forecasting. Forecasts of transport wind speeds and Haines Index outperformed mixing height forecasts with smaller errors relative to their respective means. The rainfall and lightning associated with the North American Monsoon (NAM) can vary greatly intra- and inter-annually and has a large impact on wildfire activity across the SWA by igniting or suppressing wildfires. NAM onset thresholds and subsequent dates are determined for the SWA and each Predictive Service Area (PSA), which are sub-regions used by operational fire meteorologists to predict wildfire potential within the SWA, April through September from 1995-2013. Various wildfire activity thresholds using the number of wildfires and large wildfires identified days or time periods with increased wildfire activity for each PSA and the SWA. Self-organizing maps utilizing 500 and 700 hPa geopotential heights and precipitable water were implemented to identify atmospheric patterns contributing to the NAM onset and busy days/periods for each PSA and the SWA. Resulting SOM map types also showed the transition to, during, and from the NAM. Northward and eastward displacements of the subtropical ridge (i.e., four-corners high) over the SWA were associated with NAM onset, and a suppressed subtropical ridge and breakdown of the subtropical ridge map types over the SWA were associated with increased wildfire activity. We implemented boosted regression trees (BRT) to model wildfire occurrence for all and large wildfires for different wildfire types (i.e., lightning, human) across the SWA by PSA. BRT models for all wildfires demonstrated relatively small mean and mean absolute errors and showed better predictability on days with wildfires. Cross-validated accuracy assessments for large wildfires demonstrated the ability to discriminate between large wildfire and non-large wildfire days across all wildfire types. Measurements describing fuel conditions (i.e., 100 and 1000-hour dead fuel moisture, energy release component) were the most important predictors when considering all wildfire types and sizes. However, a combination of fuels and atmospheric predictors (i.e., lightning, temperature) proved most predictive for large wildfire occurrence, and the number of relevant predictors increases for large wildfires indicating more conditions need to align to support large wildfires.

Description

Citation

Publisher

License

In Copyright(All Rights Reserved)

Journal

Volume

Issue

PubMed ID

DOI

ISSN

EISSN