Acoustically induced slip in sheared granular layers: Application to dynamic earthquake triggering

Loading...
Thumbnail Image

Authors

Ferdowsi, Behrooz
Griffa, Michele
Guyer, Robert A.
Johnson, Paul A.
Marone, Chris
Carmeliet, Jan

Issue Date

2015

Type

Article

Language

Keywords

dynamic earthquake triggering , induced earthquake , fault mechanics , granular mechanics of fault gouge

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

A fundamental mystery in earthquake physics is "how can an earthquake be triggered by distant seismic sources?" Here we use discrete element method simulations of a granular layer, during stick slip, that is subject to transient vibrational excitation to gain further insight into the physics of dynamic earthquake triggering. Using Coulomb friction law for grains interaction, we observe delayed triggering of slip in the granular gouge. We find that at a critical vibrational amplitude (strain) there is an abrupt transition from negligible time-advanced slip (clock advance) to full clock advance i.e., transient vibration and triggered slip are simultaneous. The critical strain is of order 10-6, similar to observations in the laboratory and in Earth. The transition is related to frictional weakening of the granular layer due to a dramatic decrease in coordination number and the weakening of the contact force network. Associated with this frictional weakening is a pronounced decrease in the elastic modulus of the layer. The study has important implications for mechanisms of triggered earthquakes and induced seismic events and points out the underlying processes in response of the fault gouge to dynamic transient stresses.

Description

Citation

Ferdowsi, B., Griffa, M., Guyer, R. A., Johnson, P. A., Marone, C., & Carmeliet, J. (2015). Acoustically induced slip in sheared granular layers: Application to dynamic earthquake triggering. Geophysical Research Letters, 42(22), 9750�57. doi:10.1002/2015gl066096

Publisher

License

In Copyright (All Rights Reserved)

Journal

Volume

Issue

PubMed ID

ISSN

0094-8276

EISSN

Collections