Evaluation of Warm Mix Additives for Use in Modified Asphalt Mixtures: Phase I
Loading...
Authors
Wong, Corina Borroel
Issue Date
2011
Type
Thesis
Language
Keywords
Modified Asphalt Mixtures , Moisture Damage , Warm Mix Additives , WRSC
Alternative Title
Abstract
The intention of this research effort is to evaluate the use of warm mix additives with typical polymer-modified and terminal blend tire rubber asphalt mixtures from Nevada and California. The research effort is broken into three phases that are intended to evaluate the impacts of warm mix additives with typical polymer-modified and terminal blend tire rubber asphalt mixtures from Nevada and California: moisture damage, performance characteristics, and mechanistic analysis.In Phase I of this research effort, mixture resistance to moisture damage was evaluated using the indirect tensile test and the dynamic modulus at multiple freeze-thaw cycles. Laboratory testing was conducted to address the following: (1) the impact of warm mix additive and reduced production temperatures on the moisture damage resistance of asphalt mixtures, (2) the impact of residual aggregate moisture on the moisture damage resistance of WMA mixtures, (3) the impact of warm mix additives on the moisture damage resistance of anti-strip treated WMA mixtures, and (3) the impact of long-term aging on strength gain and the moisture damage resistance of WMA mixtures.A total of one aggregate source, four warm mix asphalt technologies (Advera, Sasobit, Revix and Foaming) and three asphalt binder types (neat, polymer-modified and terminal blend tire rubber modified asphalt binders) typically used in both Nevada and California are being evaluated in this study. This thesis will only summarize the test results and findings of the Phase I of the study for two warm-mix additives: Advera and Sasobit. The evaluation of the other two technologies (i.e. Revix and Foaming) as well as the Phase II testing are still in progress and have not been completed.
Description
Citation
Publisher
License
In Copyright(All Rights Reserved)