Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity

No Thumbnail Available

Authors

Guo, Dezhou
An, Qi
Goddard III, William A.
Zybin, Sergey V.
Huang, Fenglei

Issue Date

2014

Type

Citation

Language

Keywords

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

To gain an atomistic-level understanding of how compounding the TNT and CL-20 energetic materials into a TNT/CL-20 cocrystal might affect the sensitivity, we carried out the compressive�"shear reactive molecular dynamics (CS-RMD) simulations. Comparing with the pure crystal of CL-20, we find that the cocrystal is much less sensitive. We find that the molecular origin of the energy barrier for anisotropic shear results from steric hindrance toward shearing of adjacent slip planes during shear deformation, which is decreased for the cocrystal. To compare the sensitivity for different crystals, we chose the shear slip system with lowest energy barrier as the most plausible one under external stresses for each crystal. Then we used the temperature rise and molecule decomposition as effective measures to distinguish sensitivities. Considering the criterion as number NO2 fragments produced, we find that the cocrystal has lower shear-induced initiation sensitivity by ?70% under atmospheric pressure and ?46% under high pressure (?5 GPa) than CL-20. Based on the temperature increase rate, the cocrystal has initiation sensitivity lower by 22% under high pressure (?5 GPa) than CL-20. These results are consistent with available experimental results, further validating the CS-RD model for distinguishing between sensitive and insensitive materials rapidly (within a few picoseconds of MD).

Description

Citation

Publisher

American Chemical Society

License

In Copyright

Journal

Volume

Issue

PubMed ID

ISSN

1932-7447

EISSN

Collections