Locating Si atoms in Si-doped boron carbide: A route to understand amorphization mitigation mechanism

No Thumbnail Available

Authors

Khan, Atta U.
Etzold, Anthony M.
Yang, Xiaokun
Domnich, Vladislav
Xie, Kelvin Y.
Hwang, Chawon
Behler, Kristopher D.
Chen, Mingwei
An, Qi
LaSalvia, Jerry C.

Issue Date

2018

Type

Citation

Language

Keywords

crystal structure , ceramics , Si-doped boron carbide , Density functional theory simulations , scanning transmission electron microscopy

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

he well-documented formation of amorphous bands in boron carbide (B4C) under contact loading has been identified in the literature as one of the possible mechanisms for its catastrophic failure. To mitigate amorphization, Si-doping was suggested by an earlier computational work, which was further substantiated by an experimental study. However, there have been discrepancies between theoretical and experimental studies, about Si replacing atom/s in B12 icosahedra or the C-B-C chain. Dense single phase Si-doped boron carbide was produced through a conventional scalable route. A powder mixture of SiB6, B4C, and amorphous boron was reactively sintered, yielding a dense single phase Si-doped boron carbide material. A combined analysis of Rietveld refinement on XRD pattern coupled with electron density difference Fourier maps and DFT simulations were performed in order to investigate the location of Si atoms in the boron carbide lattice. Si atoms occupy an interstitial position, between the icosahedra and the chain. These Si atoms are bonded to the chain end C atoms, which result in a kinked chain. Additionally, these Si atoms are also bonded to the neighboring equatorial B atom of the icosahedra, which is already bonded to the C atom of the chain, forming a bridge like structure. Owing to this bonding, Si is anticipated to stabilize the icosahedra through electron donation, which is expected to help in mitigating stress-induced amorphization. Possible supercell structures are suggested along with the most plausible structure for Si-doped boron carbide.

Description

Citation

Publisher

Elsevier

License

In Copyright

Journal

Volume

Issue

PubMed ID

ISSN

1359-6454

EISSN

Collections