Advancing the Monitoring Capabilities of Mountain Snowpack Fluctuations at Various Spatial and Temporal Scales
Loading...
Authors
Tarricone, Jack
Issue Date
2023
Type
Dissertation
Language
Keywords
hydrology , mountain hydrology , radar , remote sensing , snow
Alternative Title
Abstract
Snow is a critical water resource for the western US and many regions across the globe. However, our ability to accurately monitor changes in snow mass from satellite remote sensing, specifically its water equivalent, remains a challenge in mountain regions. No single sensor currently has the ability to directly measure snow water equivalent (SWE) from space at a spatial scale suitable for water supply forecasting in mountain environments. This knowledge gap calls for the innovative use of remote sensing techniques, computational tools, and data science methods to advance our ability to estimate mountain snowpacks across a range of spatial and temporal scales. The goal of this dissertation is to advance our capabilities for understanding snowpack across watershed-relevant spatial and temporal scales. Two research approaches were used to accomplish this goal: quantifying the physiographic controls and sensitivities of hydrologically important snow metrics and progressing our ability to use L-band interferometric synthetic aperture radar (InSAR) to measure SWE changes. First, we quantify the physiographic controls and various snowpack metrics in the Sierra Nevada using a novel gridded SWE reanalysis dataset. Such work demonstrates the complexity of snowpack processes and the need for fine-resolution snowpack information. Next, using L-band Interferometric Synthetic Aperture Radar (InSAR) from the NASA SnowEx campaign, both snow ablation and accumulation are estimated in the Jemez Mountains, NM. The radar-derived retrievals are evaluated utilizing a combination of optical snow-cover data, snow pits, meteorological station data, in situ snow depth sensors, and ground-penetrating radar (GPR). Lastly, we compare multisensor optical-radar approaches for SWE retrievals and find that moderate-resolution legacy satellite products provide sufficient results. The results of this work show that L-band InSAR is a suitable technique for global SWE monitoring when used synergistically with optical SCA data and snowpack modeling. While two distinctive methods are present in this research, they both work towards advancing our ability to understand the dynamics of mountain snowpack.