Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend
Loading...
Authors
Large, Simon J. E.
Bakker, Edine Y. N.
Weis, Philipp
Waelle, Markus
Ressel, Mike
Heinrich, Christoph A.
Issue Date
2016
Type
Article
Language
Keywords
Alternative Title
Abstract
The Carlin-type deposits in Nevada (western USA) constitute the world's second-largest gold ore province. These structurally and stratigraphically controlled, sediment-hosted ore bodies are characterized by carbonate dissolution attending hydrothermal precipitation of gold-rich arsenian pyrite. The origin of the mineralizing fluids and the source of the gold remain debated. Conceptual models, favoring either sedimentary, metamorphic, or magmatic fluid sources, are based on isotopic tracers, giving ambiguous results. Here we use the trace element compositions of fluid inclusions to separate geochemical signals of the large-scale fluid source from effects of deposit-scale fluid interaction with the sedimentary host rocks. Specifically, we compare the ratios of Rb, K, B, As, Sr, and Ba between clearly magmatic-hydrothermal Cu-Au ores at Copper Canyon in the Battle Mountain-Eureka trend with the Gold Quarry and Chukar Footwall deposits on the Carlin trend that contain high-grade gold in similar sedimentary host rocks. Results indicate that both ore districts can be related to upper crustal hydrous magmatic intrusions, but are now exposed at different levels of erosion and formed at different distances from their magmatic fluid source. Fluid compositions are best explained by separation of a deep magmatic fluid into Rb-K-enriched brine and B-As-Au-enriched vapor, followed by cooling and contraction of the magmatic vapor phase to an epithermal liquid, which reacted with Sr-Ba-bearing sedimentary rocks during ascent and eventual precipitation of Au-rich arsenian pyrite.
Description
Citation
Simon J.E. Large, Edine Y.N. Bakker, Philipp Weis, Markus Wälle, Mike Ressel, Christoph A. Heinrich; Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend. Geology ; 44 (12): 1015�"1018. doi: https://doi.org/10.1130/G38351.1
Publisher
License
Gold Open Access
Journal
Volume
Issue
PubMed ID
DOI
ISSN
0091-7613