A Method to Protect Mine Workers in Hot and Humid Environments
Loading...
Authors
Sunkpal, Maurice
Roghanchi, Pedram
Kocsis, Karoly C.
Issue Date
2018
Type
Article
Language
Keywords
maximum sweat rates , kin wettedness , thermal comfort models , tolerable worker exposure times , underground mine environment
Alternative Title
Abstract
Nevertheless, no known or universally accepted model for comprehensively assessing the thermal work condition of the underground mine environment is currently available. Current literature presents several methods and techniques, but none of these can expansively assess the underground mine environment since most methods consider only one or a few defined factors and neglect others. Some are specifically formulated for the built and meteorological climates, thus making them unsuitable to accurately assess the climatic conditions in underground development and production workings. Methods: This paper presents a series of sensitivity analyses to assess the impact of environmental parameters and metabolic rate on the thermal comfort for underground mining applications. An approach was developed in the form of a "comfort model" which applied comfort parameters to extensively assess the climatic conditions in the deep, hot, and humid underground mines. Results: Simulation analysis predicted comfort limits in the form of required sweat rate and maximum skin wettedness. Tolerable worker exposure times to minimize thermal strain due to dehydration are predicted. Conclusion: The analysis determined the optimal air velocity for thermal comfort to be 1.5 m/s. The results also identified humidity to contribute more to deviations from thermal comfort than other comfort parameters. It is expected that this new approach will significantly help in managing heat stress issues in underground mines and thus improve productivity, safety, and health. (C) 2017 Occupational Safety and Health Research Institute, Published by Elsevier Korea LLC.
Description
Citation
Sunkpal, M., Roghanchi, P., & Kocsis, K. C. (2018). A Method to Protect Mine Workers in Hot and Humid Environments. Safety and Health at Work, 9(2), 149�"158. doi:10.1016/j.shaw.2017.06.011
Publisher
License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Journal
Volume
Issue
PubMed ID
ISSN
2093-7911