Anisotropic shock sensitivity of cyclotrimethylene trinitramine (RDX) from compress-and-shear reactive dynamics

No Thumbnail Available

Authors

An, Qi
Liu, Yi
Zybin, Sergey V.
Kim, Hyungjun
Goddard III, William A.

Issue Date

2012

Type

Citation

Language

Keywords

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

We applied the compress-and-shear reactive dynamics (CS-RD) simulation model to study the anisotropic shock sensitivity of cyclotrimethylene trinitramine (RDX) crystals. We predict that, for mechanical shocks between 3 and 7 GPa, RDX is most sensitive to shocks perpendicular to the (100) and (210) planes, whereas it is insensitive for shocks perpendicular to the (120), (111), and (110) planes. These results are all consistent with available experimental information, further validating the CS-RD model for distinguishing between sensitive and insensitive shock directions. We find that, for sensitive directions, the shock impact triggers a slip system that leads to large shear stresses arising from steric hindrance, causing increased energy inputs that increase the temperature, leading to dramatically increased chemical reactions. Thus, our simulations demonstrate that the molecular origin of anisotropic shock sensitivity results from steric hindrance toward shearing of adjacent slip planes during shear deformation. Thus, strain energy density, temperature rise, and molecule decomposition are effective measures to distinguish anisotropic sensitivities. We should emphasize that CS-RD has been developed as a tool to distinguish rapidly (within a few picoseconds) between sensitive and insensitive shock directions of energetic materials. If the high stresses and rates used here continued much longer and for larger systems, it would ultimately result in detonation for all directions, but we have not demonstrated this.

Description

Citation

Publisher

American Chemical Society

License

In Copyright

Journal

Volume

Issue

PubMed ID

ISSN

1932-7447

EISSN

Collections