Anisotropic shock response of columnar nanocrystalline Cu

Loading...
Thumbnail Image

Authors

Luo, Sheng-Nian
Germann, Timothy C.
Desai, Tapan G.
Tonks, Davis L.
An, Qi

Issue Date

2010

Type

Article

Language

Keywords

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

We perform molecular dynamics simulations to investigate the shock response of idealized hexagonal columnar nanocrystalline Cu, including plasticity, local shear, and spall damage during dynamic compression, release, and tension. Shock loading (one-dimensional strain) is applied along three principal directions of the columnar Cu sample, one longitudinal (along the column axis) and two transverse directions, exhibiting a strong anisotropy in the response to shock loading and release. Grain boundaries (GBs) serve as the nucleation sites for crystal plasticity and voids, due to the GB weakening effect as well as stress and shear concentrations. Stress gradients induce GB sliding which is pronounced for the transverse loading. The flow stress and GB sliding are the lowest but the spall strength is the highest, for longitudinal loading. For the grain size and loading conditions explored, void nucleation occurs at the peak shear deformation sites (GBs, and particularly triple junctions)
spall damage is entirely intergranular for the transverse loading, while it may extend into grain interiors for the longitudinal loading. Crystal plasticity assists the void growth at the early stage but the growth is mainly achieved via GB separation at later stages for the transverse loading. Our simulations reveal such deformation mechanisms as GB sliding, stress, and shear concentration, GB-initiated crystal plasticity, and GB separation in nanocrystalline solids under shock wave loading.

Description

Citation

Publisher

AIP Publishing

License

In Copyright

Journal

Volume

Issue

PubMed ID

ISSN

0021-8979

EISSN

Collections