Application of Integer Programming for Mine Evacuation Modeling with Multiple Transportation Modes
Loading...
Authors
Asare, Frimpong Kwaku
Issue Date
2023
Type
Thesis
Language
Keywords
Evacuation , Integer-Programming , Optimisation
Alternative Title
Abstract
The safe evacuation of miners during an emergency within the shortest possible time is very important for the success of a mine evacuation program. Despite developments in the field of mine evacuation, little research has been done on the use of mine vehicles during evacuation. Current research into mine evacuation has emphasized on miner evacuation by foot. Mathematical formulations such as Minimum Cost Network Flow (MCNF) models, Ant Colony algorithms, and shortest path algorithms including Dijkstra's algorithm and Floyd-Warshall algorithm have been used to achieve this. These models, which concentrate on determining the shortest escape routes during evacuation, have been found to be computationally expensive with expanding problem sizes and parameter ranges or they may not offer the best possible solutions.An ideal evacuation route for each miner must be determined considering the available mine vehicles, locations of miners, safe havens such as refuge chambers, and fresh-air bases. This research sought to minimize the total evacuation cost as a function of the evacuation time required during an emergency while simultaneously helping to reduce the risk of exposure of the miners to harmful conditions during the evacuation by leveraging the use of available mine vehicles. A case study on the Turquoise Ridge Underground Mine (Nevada Gold Mines) was conducted to validate the Integer Programming (IP) model. Statistical analysis of the IP model in comparison with a benchmark MCNF model proved that leveraging the use of mine vehicles during an emergency can further reduce the total evacuation time. A cost-savings analysis was made for the IP model, and it was found that the time saved during evacuation, by utilizing the IP model, increased linearly, with an increase in the number of miners present at the time of evacuation.