A Bivariate Gamma Mixture Discrete Pareto Distribution

Loading...
Thumbnail Image

Authors

Amponsah, Charles K.

Issue Date

2017

Type

Thesis

Language

Keywords

Actuarial Science , Characteristic function , Integral transforms , Maximum likelihood estimation , Moments , Random sums

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

We study a four-parameter generalization of the of bivariate exponential geometric (BEG) law of Kozubowski and Panorska (2005) and bivariate gamma geometric (BGG) law (Barreto-Souza, 2012). The new bivariate distribution is referred to as gamma mixture discrete Pareto (GMDP) law. A bivariate random vector (X;N) follows GMDP law if N is a two-parameter discrete Pareto random variable studied by Buddana and Kozubowski (2014) and X is the sum of N independent, identically distributed gamma random variables, independent of N. Our results include conditional and marginal distributions, integral transforms, moments and covariance matrix. We also study the problem of parameter estimation using maximum likelihood and simulation studies to validate our estimation strategies, which for the most part do not produce estimators in explicit forms.

Description

Citation

Publisher

License

In Copyright(All Rights Reserved)

Journal

Volume

Issue

PubMed ID

DOI

ISSN

EISSN