The Impact of Meteorology on Ozone Levels in the Lake Tahoe Basin
Loading...
Authors
Theiss, Sandra
Issue Date
2015
Type
Dissertation
Language
Keywords
HYSPLIT , Lake Tahoe , ozone , WRF
Alternative Title
Abstract
The Lake Tahoe Basin is located on the California-Nevada border and occasionally experiences elevated levels of ozone exceeding the 70 ppb California Air Resources Board (CARB) ambient air quality standard (8-hour average). Previous studies indicate that both the local generation of ozone in the Basin and long-range transport from out-of-Basin sources are important in contributing to ozone exceedances, but little is known about the impact of meteorology on the distribution of ozone source regions. In order to develop a better understanding of the factors affecting ozone levels and sources in the Lake Tahoe Basin, this study combines observational data from a 2010 and 2012 summer field campaigns, HYSPLIT back trajectories, and WRF model output to examine the meteorological influences of ozone transport in the topographically complex Lake Tahoe Basin. Findings from the field work portions of this study include enhanced background ozone levels at higher elevations, the local circulation pattern of lake breezes occurring at Lake level sites, and an indication that ozone precursors are coming off the Lake. Our analysis also showed that if transport of ozone does occur, it is more likely to come from the San Joaquin Valley to the south rather than originate in the large cities to the west, such as Sacramento and San Francisco. Analysis of modeled PBL schemes as compared with observational data showed that the ACM2 PBL scheme best represented the geographical domain. The ACM2 PBL scheme was then used to show wind circulation patterns in the Lake Tahoe Basin and concluded that there is decent vertical mixing over the Basin and no indication of ozone transport from the west however some indication of transport from the east. Overall this study concludes that transport from the west is less significant than transport from the south and east, and that transport only influences ozone values at higher elevations. Within the Basin itself (at lower elevations), local factors including mixing depth, rising or sinking air, and lake/land breeze circulations are more significant in influencing ozone values.
Description
Citation
Publisher
License
In Copyright(All Rights Reserved)