Face Captioning Using Prominent Feature Recognition
Loading...
Authors
Lingenfelter, Bryson
Issue Date
2021
Type
Thesis
Language
Keywords
Alternative Title
Abstract
Humans rely on prominent feature recognition to correctly identify and describe previously seen faces. Despite this fact, there is little existing work investigating how prominent facial features can be automatically recognized and used to create natural language face descriptions. Facial attribute prediction, a more commonly studied problem in computer vision, has previously been used for this task. However, the evaluation metrics and baseline models currently used to compare different attribute prediction methods are insufficient for determining which approaches are best at classifying highly imbalanced attributes. We also show that CelebA, the largest and most widely used facial attribute dataset, is too poorly labeled to be suitable for prominent feature recognition. To deal with these issues, we propose a method for generating weak prominent feature labels using semantic segmentation and show that we can use these labels to improve attribute-based face description.