Visual adaptation reveals an objective electrophysiological measure of high-level individual face discrimination

Loading...
Thumbnail Image

Authors

Retter, Talia L.
Rossion, Bruno

Issue Date

2017

Type

Article

Language

Keywords

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

The ability to individualize faces is a fundamental human brain function. Following visual adaptation to one individual face, the suppressed neural response to this identity becomes discriminable from an unadapted facial identity at a neural population level. Here, we investigate a simple and objective measure of individual face discrimination with electroencephalographic (EEG) frequency tagging following adaptation. In a first condition, (1) two facial identities are presented in alternation at a rate of six images per second (6 Hz
3 Hz identity repetition rate) for a 20 s testing sequence, following 10-s adaptation to one of the facial identities
this results in a significant identity discrimination response at 3 Hz in the frequency domain of the EEG over right occipito-temporal channels, replicating our previous findings. Such a 3 Hz response is absent for two novel conditions, in which (2) the faces are inverted and (3) an identity physically equidistant from the two faces is adapted. These results indicate that low-level visual features present in inverted or unspecific facial identities are not sufficient to produce the adaptation effect found for upright facial stimuli, which appears to truly reflect identity-specific perceptual representations in the human brain.

Description

Citation

Retter, T. L., & Rossion, B. (2017). Visual adaptation reveals an objective electrophysiological measure of high-level individual face discrimination. Scientific Reports, 7(1). doi:10.1038/s41598-017-03348-x

Publisher

License

Creative Commons Attribution 4.0 International

Journal

Volume

Issue

PubMed ID

ISSN

2045-2322

EISSN

Collections