Bi 2 WO 6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance

No Thumbnail Available

Authors

Sun, Songmei
Wang, Wenzhong
Jiang, Dong
Zhang, Ling
Li, Xiaoman
Zheng, Yali
An, Qi

Issue Date

2014

Type

Citation

Language

Keywords

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

The kinetic competition between electron-hole recombination and water oxidation is a key limitation for the development of efficient solar water splitting materials. In this study, we present a solution for solving this challenge by constructing a quantum dot-intercalated nanostructure. For the first time, we show the interlayer charge of the intercalated nanostructure can significantly inhibit the electron-hole recombination in photocatalysis. For Bi2WO6 quantum dots (QDs) intercalated in a montmorillonite (MMT) nanostructure as an example, the average lifetime of the photogenerated charge carriers was increased from 3.06 μs to 18.8 μs by constructing the intercalated nanostructure. The increased lifetime markedly improved the photocatalytic performance of Bi2WO6 both in solar water oxidation and environmental purification. This work not only provides a method to produce QD-intercalated ultrathin nanostructures but also a general route to design efficient semiconductor-based photoconversion materials for solar fuel generation and environmental purification.

Description

Citation

Publisher

Springer Verlag

License

In Copyright

Journal

Volume

Issue

PubMed ID

ISSN

1998-0124

EISSN

Collections