Photosynthesis, respiration, gas-exchange, diffusion, and stable isotopes of oxygen and carbon in a small mesotrophic lake (Castle Lake, CA)
Loading...
Authors
Brown, Julie M.
Issue Date
2011
Type
Thesis
Language
Keywords
Castle Lake , dissolved inorganic carbon , dissolved oxygen , productivity , stable isotopes
Alternative Title
Abstract
The purpose of this study was to investigate the application and usefulness of
dissolved oxygen (DO) concentration, dissolved oxygen stable isotope (δ
18O-DO),
dissolved inorganic carbon (DIC) concentration, and dissolved carbon stable isotope
(δ
13C-DIC) measurements for quantifying biological activity in a lake over the course of a
summer season. The hypothesis was that collection of this suite of measurements would
potentially allow for quantification of the rates of various processes (such as
photosynthesis, respiration, and gas-exchange) that control the behavior of DO and DIC
in lakes. These measurements are applied to calculate the ratio of the rate of
photosynthesis to the rate of respiration (P:R) using DO and δ
18O-DO.
This study presents DO concentration, δ18O-DO, DIC concentration, and δ13CDIC data collected every 2m from 2-30m in Castle Lake, CA, during events sampling
events about two weeks apart from 12 July 2010 to 6 November 2010. Large ranges of
δ
18O-DO (9.8 to 33.8‰) and δ13C-DIC (-18.7 to -10.0‰) values were observed. These
parameters demonstrate strong and systematic variation vs. depth as a result of the
predominance of photosynthesis operating at mid-range depths (below the surface
mixed layer, SML), where δ18O-DO = 9.8 to 11‰, and δ13C-DIC = -13.5 to -10.0‰. δ18ODO and δ13C-DIC values indicate that respiration is the dominant process at ~20-30m in
the lake; however it is possible that other reactions that consume DO and produce DIC
(and isotopically fractionate both species) are operating at depth. Short-term (diel)
fluctuations of DO concentration and pH were areas investigated, but were not
observed.
Two series of rate of photosynthesis to rate of respiration ratio (P:R) calculations
were performed: (1) DO-derived P:R calculations using formulae available in the
literature, and assuming that gas-exchange with the atmosphere is taking place; (2) DIC-
derived P:R calculations using formulae derived in this study, and assuming that gasexchange with the atmosphere is taking place, and (3) calculations that assumed
diffusion not gas-exchange was taking place. All three series of P:R ratio calculations
require that DO and DIC concentrations and stable isotope compositions are at (or near)
steady state, which appears to be a reasonable assumption for Castle Lake during peak
summer conditions.
The DO-derived calculations yield P:R ratios that varied from 0.18 to 2.19 that
vary systematically with depth, and indicate that photosynthesis dominates above, and
respiration dominates below about 10 - 18 m. A sensitivity analysis reveals that DOderived P:R calculations are most sensitive to the fractionation factors associated with
photosynthesis and respiration. Dissolved inorganic carbon-based calculations yield P:R
ratios from 0.79 to 1.20 that also vary systematically with depth, and indicate that
photosynthesis dominates above, and respiration dominates below ~17 m. A sensitivity
analysis reveals that DIC-derived P:R calculations are most sensitive to the
photosynthesis and respiration fractionation factors, and the δ13C value of the organic
matter consumed during respiration.
This study demonstrates that measurement of DO concentration, δ18O-DO, DIC
concentration, and δ13C-DIC, with subsequent calculation of P:R ratios, is a useful
technique for quantifying biological activity in a lake. However, future work is needed to
successfully incorporate diffusion into P:R calculations for use below the surface mixed
layer (SML), and to better quantify fractionation factors for P and R in order to increase
the accuracy of P:R ratio calculations. Further work is also needed to assess what
additional processes, if any, are operating in Castle Lake that also may affect DO and
DIC concentrations and stable isotope compositions, e.g. anaerobic respiration,
precipitation and/or dissolution of calcium carbonate, anaerobic decomposition of
organic matter, or input of DIC-rich surface and groundwaters.
Description
Citation
Publisher
License
In Copyright(All Rights Reserved)