Developing an Efficient Calibration System for Joint Offset of Industrial Robots
Loading...
Authors
Gao, Bingtuan
Liu, Yong
Xi, Ning
Shen, Yantao
Issue Date
8/3/2014
Type
Article
Language
Keywords
Alternative Title
Abstract
Joint offset calibration is one of the most important methods to improve the positioning accuracy for industrial robots. This paper presents an efficient method to calibrate industrial robot joint offset. The proposed method mainly relies on a laser pointer mounted on the robot end-effector and a position sensitive device (PSD) located in the work space arbitrarily. A vision based control was employed to aid the laser beam shooting at the center of PSD surface from several initial robot postures. For each shoot, the laser beam was a line in space which can be determined by the robot joint angles and their offsets which were recorded when the laser beam was brought to the center of the PSD surface. Therefore, there are several lines in space parameterized by robot joint offsets only and all these lines were constrained by the same point, that is, the center of the PSD surface. Consequently, an optimization model was formulated and the Levenberg-Marquardt (LM) algorithm was employed to identify the joint offsets. The developed calibration system was implemented on an ABB industrial robot IRB1600 successfully. And the joint offsets of this robot can be calibrated within 6 minutes.
Description
Citation
Publisher
Journal
Volume
Issue
PubMed ID
ISSN
1110-757X