Partial Substitution of Copper by Cobalt, Iron, and Nickel in the [Cu3O3]2+ Active Site Motif for Improved Methane to Methanol Conversion in the Zeolite Mordenite

Loading...
Thumbnail Image

Authors

Reed, Janel Ashlan

Issue Date

2018

Type

Thesis

Language

en_US

Keywords

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

We have performed Density Functional Theory (DFT) calculations to examine the effects of partial substitution of copper atoms within the active site motifs involved in methane-to-methanol conversion (MMC) in copper-exchanged zeolites. The model catalyst [Cu3O3(H2O)6]2+ was compared to the [Cu2MO3(H2O)6]2+ species, where M is nickel, iron, or cobalt. The objective was to determine if the replacement of a copper atom with another earth-abundant metal would decrease the reaction barriers associated with methane C-H activation. A reduction in the barrier will lead to increased rates for MMC. We hypothesized that introduction of nickel, iron, or cobalt atoms into the active site motifs will induce novel electronic structure properties that will result in lower C-H activation barriers and increased rates for MMC. We hypothesized that the remaining two copper atoms would allow for high methanol selectivity, as seen in the all-copper system. Our results allowed us to conclude that replacement of a copper center by any of nickel, cobalt or iron results in lower C-H barriers. We also investigated descriptors that can be used to correlate the properties of the catalyst with its C-H transition state barrier. We determined that the hydrogen abstraction energies (HAE) do not correlate with the C-H transition state barriers at the H-O2 position but show correlation for the H-O1 position for the hetero-metallic systems. This suggests that while the correlation between HAE and activation barriers is proven for homo-metallic systems, such relationships only exist for their hetero-metallic analogues when measured in between the hetero-metallic atoms.

Description

The University of Nevada, Reno Libraries will promptly respond to removal requests related to content that violates intellectual property laws, data protections, or has been uploaded without creator consent. Takedown notices should be directed to our ScholarWolf team (scholarwolf@library.unr.edu) with information about the object, including its full URL and the nature of your complaint.

Citation

Publisher

License

In Copyright

Journal

Volume

Issue

PubMed ID

DOI

ISSN

EISSN