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Abstract 

The biomass of trees is estimated by using allometric equations, which use simple 

tree metrics, such as diameter and height, to predict the size of the tree. Biomass is 

extremely important for determining carbon sequestration rates and carbon mapping in 

forests, as an individual treeôs biomass is approximately fifty percent carbon. However, 

estimating the biomass of the trees is traditionally accomplished via the use of allometric 

equations calibrated by destructively harvesting trees in the field. Requiring destructive 

sampling to calibrate these models often leads to small sample sizes and a lack of a 

complete range of tree sizes and species sampled. An alternative solution to destructive 

harvesting uses terrestrial laser scanning (TLS) to estimate the volume, diameter, and 

height of trees in the field, and combine these with estimates of wood specific gravity. 

These data can then be used to generate allometric equations without many of the 

limitations of destructive sampling approaches. In our analysis, we scanned 108 plots 

located in the northern Sierra Nevada. We used TreeQSM to estimate volume for 

sampled trees and determined the mean species wood specific gravity to estimate 

biomass. We compared our QSM tree metrics against metrics measured in the field and 

ran a non-linear mixed effects model to determine the effect of climate on our allometric 

equations. Our results suggest that our two topoclimatic variables, climatic water deficit, 

and actual evapotranspiration, did not affect our biomass equations. We then used three 

allometric equation forms to estimate biomass using two different tree parameters, height, 

and diameter. We found that TLS can be used as a rapid method for estimating volume, 

height, and diameter, and we created species-specific allometric equations for trees across 

the Sierra Nevada that may have important applications for large-scale AGB estimation. 
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Introduction  

Of the total carbon eitted by anthropogenic sources, almost half of the 

anthropogenic emissions are absorbed by terrestrial and ocean sinks (Canadell et al. 

2007). Since anthropogenic carbon emissions have grown faster than CO2 sinks, 

identifying forests for their potential to act as carbon sinks is vital to mitigate excess 

anthropogenic carbon emissions (Canadell and Shultze, 2014). Carbon stock estimations 

rely on accurate aboveground biomass (AGB) datasets. These AGB estimates cannot be 

easily measured, as direct measurements of biomass traditionally required destructively 

sampling trees and weighing them in the field (Picard et al. 2012). Since harvesting trees 

and weighing them in the field is time-intensive and costly, most research uses allometric 

equations to estimate biomass. Forest AGB estimates typically are determined by using 

tree structural metrics, such as diameter-at-breast-height (DBH) and height, in allometric 

equations that then convert tree structure metrics into biomass and carbon estimates 

(Chave et al. 2005). Allometric equations are an indirect way to estimate biomass through 

easily measurable variables such as diameter and height (Brown et al. 1989) but 

destructively harvested a small number of trees to create allometric equations (Chave et 

al. 2005).  

Allometric equations can produce large uncertainties when extrapolated to 

populations that have little to no data, and many allometric equations are built with 

relatively small sample sizes, such as a mean destructive sample size of 23 for Jenkins et 

al. (2003), 81 for Lambert et al. (2005) and a few hundred for Woodall et al. (2010) and 

Chojnacky et al. (2014). These allometric equations created with small sample sizes are 

often applied beyond the population they sampled from, cannot accurately represent the 
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biomass of a region, and thus systematically overestimate field carbon stock in North 

America (Duncanson et al. 2015). Duncanson et al. (2015) also suggested that allometric 

equation parameters vary drastically with sample size, and the error of biomass prediction 

when using small sample sizes may extend well above errors reported in Chave et al. 

(2004).   

Since the limiting factor for creating accurate allometric equations historically is 

destructively harvesting trees, an alternative is to rely on terrestrial laser scanning (TLS) 

which is a very precise and easily portable LiDAR technology that can recreate forest 

structure to millimeter level accuracies (Disney et al. 2019). Volume can be very 

accurately estimated from the TLS point cloud (Raumonen et al. 2013), and when 

multiplied by wood specific gravity, can lead to a ± 10% uncertainty for TLS derived 

AGB (Calders et al. 2015). Understanding the variability of wood specific gravity across 

a topoclimatic gradient is crucial for predicting biomass across a region (Chave et al. 

2006). The combination of region and species-specific wood specific gravity values, with 

increased sampling with the TLS approach, can produce novel allometric equations for 

the northern Sierra Nevada tree species. 
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Chapter 1. Variation in wood specific gravity across northern Sierra Nevada forests 

Abstract 

Allometric equations are widely used to predict above-ground biomass and carbon 

stocks in forests. These equations use easy-to-measure tree parameters, such as diameter-

at-breast-height (DBH) and height. When combined with stem taper or terrestrial laser 

scanning (TLS) approaches to volume estimation, allometric equations require wood 

specific gravity as an important predictor of tree biomass. Thus, precise estimates of 

wood specific gravity, calculated as oven-dry mass divided by green volume, can help 

reduce uncertainties in allometric equations. Measurements of wood specific gravity may 

be particularly important in northern Sierra Nevada forests which encompass diverse 

temperate mixed-conifer ecosystems that will likely see a drastic shift in species 

composition and trait variation due to climate change and historical anthropogenic 

influence. To reduce biomass bias at an individual tree level, and because small sample 

sizes can lead to uncertainty, it is important to examine how wood specific gravity varies 

across a region. We calculated wood specific gravity of 329 cores across 16 different tree 

species in Plumas National Forest and the Lake Tahoe Basin Management Unit to 

understand how it varies along a climate and vegetation gradient in northern Sierra 

Nevada forests. Linear mixed effects models showed that most of the variation in wood 

specific gravity was explained by species, and, to a lesser extent, tree height, with no 

significant effect of climate when looking at climatic water deficit (DEF) and actual 

evapotranspiration (AET) as predictor variables.  
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1. Introduction 

Forests contain approximately 45% of terrestrial carbon (Bonan, 2008) and are 

estimated to contain at least 522 Pg in live above-ground biomass in forests (Santoro et 

al. 2021). As a result, these ecosystems are responsible for approximately half of the 

carbon dioxide (CO2) fluxes of all terrestrial biomes and sequestered roughly 3.5 +- 1.0 

PgC yr-1 during the last 10 years (Le Quere et al. 2018). Therefore, estimating forest 

biomass and carbon stocks is important for understanding and modeling the global carbon 

cycle to offset anthropogenic carbon dioxide emissions. The global estimates of carbon 

stocks and sinks are uncertain (Houghton, Hall, & Goetz, 2009) and carbon stocks are 

typically estimated using remote sensing methods that estimate biomass over large scales 

(Avitabile et al. 2012). Carbon maps and sequestration rates need accurate in-situ 

biomass estimates; however, there can be large differences in biomass estimates 

especially when derived from small sample sizes (Mitchard et al. 2013). In California, 

landowners and land managers must develop land management strategies to improve 

forest health related to fire (Hurteau et al. 2011) and carbon (Swann et al. 2012). 

Carbon maps at any scale using either remote sensing and/or field data rely on 

allometric equations relating parameters that are measured in the field, such as diameter-

at-breast height and height to predict above-ground biomass and therefore individual tree 

stocks (Jenkins et al. 2003). Allometric equations for forested systems require trees to be 

destructively sampled and have been shown to be sensitive to sample size. For example, 

parameters for allometric equations are systematically biased relating to small sample 

sizes, and thus using allometric equations developed with small sample sizes may 

overestimate field carbon stocks in North America (Duncanson et al. 2015).  Since 



  7 

destructively harvesting large sample sizes is not feasible for most studies, researchers 

can use wood specific gravity measurements obtained through coring a tree to increase 

sample size and reduce biomass bias at the individual tree level (Duncanson et al. 2015).  

Including wood specific gravity as an important predictive variable in above-ground 

biomass models, in addition to diameter and height can reduce the bias of allometric 

models (Chave et al. 2014). However, it is important to understand the variability of 

wood specific gravity because ignoring the variability results in the poor predictive power 

of above-ground biomass equations (Baker et al. 2004).  

Wood specific gravity is defined as the ratio of oven-dry mass to green volume 

(unitless) and is different from wood density which is defined as the mass of a wood per 

unit volume at a given moisture content (kg m į) and is a key functional trait of a woody 

plant (Williamson and Weimman, 2010). Wood specific gravity is closely tied with life-

history traits and can vary with diameter, growth rate, reproduction timing, and 

mechanical strength of a tree and is important to plant form and function (Carlquist et al. 

1977, Enquist et al. 1999). Structure determines wood specific gravity, with higher wood 

specific gravity trees having a greater proportion of cells with thicker cell walls 

(Simpson, 1993). Wood specific gravity reflects a plantôs carbon investment, and is 

negatively associated with growth rate (Enquist et al. 1999, Muller-Landau, 2004, 

Wikberg & Ogren, 2004, King et al. 2005), and is positively associated with longevity 

and survival (Muller-Landau, 2004). Overall, long-lived, slow-growing trees tend to have 

a higher wood density compared to short-lived, fast-growing, pioneer species 

(Saldarriaga et al. 1988, Swaine & Whitmore, 1988, Wiemann & Williamson, 1988). 

Conventional thinking states that the fast-growing pioneer species are thought to allocate 
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fewer resources to strength, while slow-growing, climax species are thought to allocate 

more resources to greater strength. However, Larjavaara and Muller-Landau (2010) 

questioned whether the lower wood density of the same strength leads to high 

maintenance costs but lower construction costs. High wood density also provides 

additional benefits other than strength, including resistance to pathogens and defense 

against physical damage (Rowe and Speck, 2005).  

Plants can respond to drought stress by increasing wood density, for example, 

wood density has been shown to increase with aridity (Martinez-Cabrera et al. 2009). 

Variation in fiber trails, specifically fiber lumen diameters which relate to cell wall 

thickness, is responsible for driving most of the variation in wood density (Martinez-

Cabrera et al. 2009). Swenson & Enquist (2007) found a strong relationship between 

wood density in seed plants and variation in temperature, demonstrating key functional 

trait variation along an abiotic gradient. Wood density has been shown to vary across a 

latitudinal gradient (Wiemann & Williamson, 2002), in addition to climatic and soil 

nutrient gradients (Swenson & Enquinest, 2007). Wood density has been found to be 

responsive to drought, with density increasing with water stress as conduit wall 

reinforcement leads to cavitation resistance (Hacke et al. 2001). Though abiotic factors 

can lead to variation in wood density, the genetic component of wood density cannot be 

ignored. Wood density demonstrates high heritability, suggesting that abiotic forces may 

not be the main driver of variation in wood density at a local level (Chave et al. 2006).    

The controlling factor of genetic and environmental factors on specific wood 

gravity is called the ótree effectô and is responsible for the large inter-tree variability 

(Bouriaud et al. 2005).  As forests are increasingly under threat from climate change, 
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drought stress on forest ecosystems may lead to variation in wood specific gravity, which 

will strongly influence the carbon storage capacity of entire forests and may be an 

indicator of declining ecosystem productivity. Spatial and genetic variability in wood 

density leads to variation in above-ground biomass calculations. Therefore, it is critical to 

understand wood density variation across individual, local and regional scales to reduce 

uncertainties in above-ground biomass estimates of a forest.   

Here, we investigated the relationship between wood specific gravity and tree 

species, structure, and climate across a topoclimatic gradient in northern Sierra Nevada 

forests, California. The Sierra Nevada mixed conifer forests are increasingly vulnerable 

to drought stress (Van Gunst et al. 2016), overgrown forests, and frequently more 

common stand-replacing fires as a result of climate change, human activity, and historical 

fire suppression. Predicting the variability of wood specific gravity of the Sierra Nevada 

tree species may impact regional biomass estimates, and thus affect carbon stock 

estimates. We hypothesized that tree species and size would be the dominant driver of 

wood specific gravity variability, with wood specific gravity increasing with tree size. 

Further, we hypothesized that climate may play a role in influencing wood specific 

gravity, with wood specific gravity increasing with drought stress. 

2. Methods 

2.1 Area of Interest (AOI) and study species  

The northern Sierra Nevada is dominated by mixed-conifer forests that are 

warming at a mean rate of 1 to 2.5 ° F, and the proportion of precipitation falling as rain 

versus snow is increasing (North et al. 2012).  The climate of the Sierra Nevada is 

Mediterranean, with long dry summers and cool, wet winters with increasing 
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precipitation as elevation increases (van Mantgem & Stephenson, 2007, Guarin & Taylor, 

2005). The Sierra Nevada forests start with lower elevation chaparral and woodland 

foothills before proceeding into ponderosa pine and mixed conifer forests. Many tree 

species in the Sierra Nevada are drought-tolerant, including P. ponderosa, P. jeffreyii, Q. 

keloggii, C. decurrens, and J. occidentalis.  

The northern Sierra Nevada forests extend from Lake Tahoe to the southern 

border of Lassen National Park and across a large topoclimatic gradient and are primarily 

dominated by mixed-conifer forests. Within the Northern Sierra Nevada forests, we 

selected two primary areas of interest (AOIs) for our analysis: the Lake Tahoe Basin 

Management Unit (LTBMU) and Plumas National Forest. These two sites cover a wide 

range of the topoclimatic variability found in the Northern Sierras, covering elevations 

ranging from 215 to 2818 meters above sea level (Table 1).  
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Table 1. Climate variable minimum and maximums for each tree species, with a 

noticeable lack of climate data for Pinus albicaulis due to lack of climate data attributed 

to this species. 

 

2.2 Tree selection and attribution 

Plot locations were chosen as part of a larger terrestrial laser scanning (TLS) 

study across the northern Sierra Nevada, and our area of interest (AOI) includes 89 plots 

located in Californiaôs northern Sierra Nevada forests (Figure 1). To be considered, plot 

locations had to have more than 10% tree cover based on a LANDSAT analysis and were 

stratified by elevation. In addition, we excluded plot locations falling in recent burn scars 

or recently logged land. Plot locations were then stratified and randomly sampled 

according to a two-stage design to sample representative forest types in Plumas National 
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Forest and the Lake Tahoe Basin Management Unit. First, 10 km grid cells were placed 

on public lands within the boundaries of the AOIs. Secondly, two plot centers were 

randomly sampled from within each 10km grid cell within 60 m to 120 m of the nearest 

access road.  This resulted in a total of 89 plots (Figure 1), including 3 opportunistic plots 

placed in Tahoe National Forest to sample Juniper occidenatlis and Pinus monticola, 

species, which needed additional plots placed due to pervasive rot (J. occidentalis) and 

rare occurrence. For each plot, we assigned all climate data (Morrison, 2018) for the 

period of 2019 (Table 2). Our climate dataset was downsampled from a continuous 

geospatial database using statistical downsampling techniques. While downsampling 

climate variables can incorporate fine-scale topographic features, downscaling climate 

data can result in worse performance for annual minima (Fowler et al. 2017).  

Two water balance parameters included in these data are climatic water deficit 

(DEF) and actual evapotranspiration (AET), and are well-documented to control for 

drought stress on trees and can dictate the range where tree species occur (Stephenson, 

1990, Lutz et al., 2010). DEF and AET are derived from potential evapotranspiration 

(PET), rain, and snow to determine available water supply, with AET= PET - DEF 

(Morrison, 2018). Climatic water deficit is the amount of evaporative demand that is not 

met by how much water is available and is an indicator of how arid a site is, while actual 

evapotranspiration is the evaporative water loss taken from how much water is available 

at a site and represents how much water is available for consumption (Stephenson, 1990). 

AET and DEF are well correlated with vegetation distribution compared to other climate 

parameters, such as temperature and precipitation (Stephenson, 1998). For this reason, we 

are focusing on DEF and AET as a priori variables, not only to stratify sampling across 
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our AOI but also as a potential indicator of variability in wood specific gravity across the 

climate gradient of northern Sierra Nevada forests. Plot-level topography variables, such 

as aspect or elevation, were not included in the correlation analysis or linear mixed 

effects models because the climate variables used in this study, such as water deficit 

(DEF), actual evapotranspiration (AET), radiation, precipitation, and snowfall were 

calculated using topographic predictors at a variety of scales (Morrison, 2018) 

 
 

Table 2. All climate variables (Morrison, 2018) were assigned to the virtual stem maps 

created for each plot used in sampling. 

 

Once the plot centers were established, we set up 30m x 30m plots, with a 5m 

buffer, for our field data collection. For each plot, we created stem maps within the plot 

by assigning tree species and DBH to each tree in the plot. In addition to the stem maps, 

each plot was scanned using a terrestrial laser scanning (TLS) instrument, and the 

resultant scan was used to create a "virtual" stem map which included the position and 

DBH for each tree in the plots. TLS collection, preprocessing, and virtual stem mapping 

are described in more detail in Hartsook (2021). These virtual stem maps were linked 
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with the field-collected stem maps, as well as the plot-level topoclimate data to create a 

final stem map that contained the position, species, DBH, and local topoclimate of each 

tree in the plots, for N= 5,873 trees mapped. 

 
 

Figure 1. TLS plot locations (n=89) across Plumas National Forest and Lake Tahoe 

Basin Management unit, with three opportunist plots placed in Tahoe National Forest to 

sample J. occidenatalis and P. monticola. We included one plot located in Nevada 

(located in the Mt. Rose Wilderness) to sample P. albicaulis. 

 

From our tree database, we performed stratified sampling to select trees we 

planned to take wood specific gravity measurements from, to try to sample as evenly as 

possible across the multivariate stratification space. We stratified across tree species, 

diameter size class, and climatic water deficit (DEF). We determined each species' 

climatic water deficit range and sampled evenly across CWD in 25 mm bins ranging from 

50 mm to 200 mm. Within each CWD bin, we sampled across DBH ranging from 15 cm 
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to 130 cm in 10 cm bins. In total, 329 trees were selected across 16 tree species and 12 

size classes. Figure 2 shows the sample sizes for each of these bins. The range of DBH 

size classes sampled extended from 15 cm to 130 cm with the goal of sampling evenly 

across all DBH size classes for each tree species. Figure 2 illustrates that just under half 

of our total number of samples were collected in the 15-25 and 25-35 cm DBH size 

classes; this is due to many of the smaller diameter trees, including  Populus tremuloides, 

Quercus kelloggii, Notholithocarpus densiflorus, do not get very large even as adult trees. 

In addition to coring, we collected tree measurements (329 in total) in the field, including 

DBH (diameter-at-breast height) using a DBH tape, tree height, crown spread, and lowest 

live crown using standard forest mensuration equipment and techniques (National Core 

Field Guide, 2019) using a laser rangefinder (TruPulse 360 Laser Rangefinder).  
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Figure 2. Sample sizes of cored trees to obtain wood specific gravity measurements for 

each 10 cm DBH bin ranging from 15cm to 135 cm. The 15-25 and 25-35cm range 

consisted of a majority of cored trees because some tree species, for example, P. 

tremuloides, Q. kelloggii, N. densiflorus, are smaller in diameter compared to mixed 

conifer species that become large, late-successional tree species. 

 

Climate variables were calculated at a plot level to test the variability of wood 

specific gravity with climate across a tree species range in the northern Sierra Nevada 

forests. We ran a Pearson correlation test on all the climate variables (DEF, AET, ET0, 

Tmin, Tmax, Tave, RAD, rain, and snow) to evaluate potential climate predictor variables 

and selected uncorrelated variables (r <0.65) with variance inflation factors less than 5 

from the ñcarò package (Weisberg, 2019) to check for multicollinearity. Refer to Table 3 

to see which pairs of variables are highly correlated (> 0.65) and which variables were 
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selected randomly from each of the correlated pairs. The final set of predictor variables, 

after removing correlated pairs, included tree species, height, DEF, and AET, and these 

variables were used in subsequent linear mixed effects models (Table 3).  In Figure 4, we 

illustrated the predictor variables and their proxy variables, with tree height as a proxy for 

diameter and linked tree size to WSG variation, while DEF and AET were proxies for 

temperature (Tmin, Tmax, Tave) and precipitation and snowfall variables (annual rain and 

snow) and demonstrated the link of water availability (or drought stress) to WSG 

Variation (Table 3).  

2.3 Field sampling and sample processing 

We located our target trees identified in our sample design during a subsequent 

site visit.  For each selected tree we assessed the tree for signs of disturbance such as 

insect damage or disease, and only óhealthyô trees were ultimately cored and measured. 

Each target tree was cored using a 5.15mm wide increment borer at DBH until it reached 

the pith and all extracted cores were stored in a dry place. If rot was found in the tree, the 

core was discarded and the target tree was either cored again from a different direction, or 

a new tree was chosen of the same species and DBH bin. No trees were cored more than 

twice to ensure that the tree could survive sampling.  

For each core, we measured the basic wood specific gravity (WSGb) as the ratio 

of oven-dried mass to green volume (WSGb =oven dry mass/ green volume / ɟ water) 

(Chave et al. 2006). Each core was defined as a pith-to-bark sample with both pith and 

bark removed, and samples were oven-dried for 48 to 72 hours in a well-ventilated oven 

at 103 ° C until mass was constant. After the core was dried, we weighed each sample to 

the precision of 0.01 g before calculating the green volume by the water displacement 
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method (Ilic et al. 2000). The water displacement method provides more reliable 

estimates than the caliper method for calculating the volume of regular and irregular-

shaped samples (Chave et al. 2006). A beaker was filled with deionized water and each 

core sample was forced underwater with a small pin, with careful attention paid to each 

core not touching the sides or bottom of the beaker. The measured mass of the displaced 

water is equal to the green volume of the sample.   

Hardwoods exhibited a much higher mean WSG (0.72 for Quercus kellogii and 

0.66 for Notholithocarpus densiflorus) compared to the softwood Pinus, Abies, and 

Populus sp. (P. blsamifera spp.) (Figure 3, Table 2). There was substantial WSG 

variability not only across tree species but great variation within each tree species, with 

values ranging as much as 0.3 for Tsuga mertensiana (Table 2).  

2.4 Analysis 

Our goal was to test for the effect and direction of climate, species, and structure 

on wood specific gravity.  Our full list of potential predictor variables is described in 

Table 3.  Before we began our analysis, we ran a Pearson correlation test on all variables 

(DBH, Height, DEF, AET, ET0, Tmin, Tmax, Tave, RAD, rain, and snow) to evaluate 

potential predictor variables and selected uncorrelated variables (r <0.65) with variance 

inflation factors less than 5 from the ñcarò package (Weisberg, 2019) to check for 

multicollinearity. Refer to Table 3 to see which pairs of variables are highly correlated (> 

0.65) and which variables were selected randomly from each of the correlated pairs. The 

final set of predictor variables, after removing correlated pairs, included tree species, 

height, DEF, and AET, and these variables were used in subsequent linear mixed effects 

models (Table 4). Plot ID was included in this analysis to account for the random effect 
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that plot locations contribute, as the plot locations are only a small subset of the region 

we want to make an inference for.    

 
 

Table 3. Candidate predicted variables randomly chosen from each correlated pair and 

their associated proxy variable. Methods for deriving these climate variables calculated 

for each plot are described in Morrison et al. 2018. 

 

To assess trends in wood specific gravity as a function of our predictor variables, 

we used linear mixed effects models via the ñlmerò function from the ñlme4ò package 

(Bates et al. 2015) in R version 4.1.1 (R Core Team, 2021). Wood specific gravity was 

tested on the pared-down set of predictor variables (Table 3) and plot ID was included in 

each model as a random effect to account for any variation, as the plot locations are only 

a small subset of AOI about which we want to make an inference. We compared scaling 

the predictor variables and decided to use unscaled variables to ensure ease of 

interpretation, and scaling did not produce any. We used ñdredgeò in the ñMuMInò 

package in R (Barton, 2020) that performs model selection using every combination of 
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our chosen predictor variables and ranks the best fitting models according to the lowest 

Akaikeôs Information Criterion corrected for small sample sizes (AICc) score which 

prefers simpler models with fewer parameters if the change in AICc (ȹAICc) <2 

(Burnham & Anderson, 2002). Since ȹAICc was <2 for the top models returned in by the 

ñdredgeò function, a model averaging approach (ñmodel.avgò function in the ñMuMinò 

package) was used with the top four models with a ȹAICc <2. Model averaging ranks 

selected models and uses estimates for each candidate model and their respective weights 

and can provide a robust set of parameter estimates (Burnham & Anderson, 2002) before 

averaging these across multiple models to avoid the issue of picking one model with a 

ȹAICc <2. The goal of model averaging is to use Akaike weights for predictor variables 

that are on the same scale and to incorporate models with similar support in the data. The 

outputs of the model average are the parameter estimates of 4 different models and we 

interpreted the óconditionalô subset coefficients of the averaged model. Parameter 

estimates (ɓ), p-values, and Pseudo-R2 values were calculated (Table 5) along with the 

effect sizes of each predictor variable for the averaged model (Figure 4). Pseudo-R2 

values were produced using the ñr.squaredGLMMò function in the ñMuMInò Package 

(Barton, 2015).  

3. Results 

3.1 Linear mixed effects model results 

For each tree species, we calculated mean, variance, and standard deviation of the 

WSG values (Figure 3). The distribution of wood specific gravity ranged greatly for some 

species (0.3 for T. mertensiana) and ranged little for other species (0.1 for P. 

lambertiana). Q. kelloggi experienced the highest WSG with a mean of 0.72 +-.072 while 
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P. balsamifera spp. trichocarpa experienced the lowest WSG with a mean of 0.39 +- 

0.041 (Table 4). Hardwood species exhibited a much higher mean WSG (0.72 for 

Quercus kellogii and 0.66 for Notholithocarpus densiflorus) compared to the softwood 

species (Figure 3). There was substantial WSG variability not only across tree species but 

variation within each tree species, with values ranging as much as 0.3 for Tsuga 

mertensiana (Table 4).  

 
 

Table 4. Wood specific gravity means, standard deviation, range and variance, and 

diameter and height range across tree species. Means of WSG can be compared to Miles 

and Smith (2009) wood specific gravity values (green volume and oven dry mass) for 

trees of North America. 

 



  22 

 
 

Figure 3. Mean and range of WSG values for each tree species sampled, with means 

(blue diamond symbol) with a ójitterô effect demonstrating sample size for each species.  

Boxplot with jitter conducted in the ñggplot2ò package (Wickham, 2016). 

 

We tested the relationship of 329 wood specific gravity values with tree species, 

tree size, and climate with linear mixed effects models. Model averaging of our full linear 

mixed effect model returned four top models with a delta AICc < 2 (Table 5). Not 

wanting to rely purely on the AICc score, we also looked at estimated regression 

coefficients (ɓ) and the marginal and conditional R2 values, which return the explained 

variance of fixed effects (and random effects) in the model and can be used to determine 
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the fit of a model (Harrison et al., 2018). Wood specific gravity was best explained by 

species in the average LMM with significant p values <0.001 for all species except for 

Pinus lambertiana and Calocedrus decurrens (Table 5). The high marginal and 

conditional R2 values, ranging from 0.66 to 0.65, for all the LMMs (Table 5) indicates a 

high percentage of variance in the response variable (WSG) explained collectively by the 

predictor variables. However, high R2 values are not necessarily a true indicator of 

goodness of fit, so we evaluated these data, which had approximately normal 

distributions and were modeled using the default ñGaussianò family. The residuals for 

each model were approximately normal and we proceeded in using R2 values to explain 

the variation each model explains. The random effect variance of ñplotò for all 5 models 

was between 2.16e-12 and 2.4e-12 which is very small but we still included it in our 

models as a random effect. The effect sizes of the linear mixed effects models indicated 

that tree species accounted for the majority of the variation in WSG, along with height; 

however, water balance variables (DEF and AET) did not have an effect on our response 

variable were not significant (Figure 4). Partial effect plots for our LMMs suggest that 

while WSG was best explained by species, climate effects had a negligible effect across 

the range of plots and species sampled (Figure 5). Tree height significantly accounted for 

variation in wood specific gravity in the averaged LMM model with an estimated 

regression coefficient (ɓ) of -8e04 and a p-value < 0.05 (Table 5), suggesting that overall 

wood specific gravity decreases with tree size. Our results highlight the strong influence 

of tree species, and to a lesser extent, tree size, on WSG variation, with climate stressors 

not playing a significant role in the linear mixed effect models (Table 3). When looking 
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at individual speciesô WSG response to tree height and climate (Figure 6), we found no 

consistent pattern relating tree size, DEF, or AET with WSG variation across tree species. 

 
 

Table 5. Estimated regression coefficients from 5 LMM models ( ɓ, p-value, AICc, 

Marginal R2 and Conditional R2) predicting wood specific gravity values. Variables 

included in the full model were climatic water deficit (DEF), actual 

evapotranspiration(AET), species and height. We used Akaikeôs Information Criterion 

corrected for small sample sizes (AICc) which prefers simpler models with fewer 

parameters if the change in AIC (ȹAICc) <2. Larger ȹAICc values indicate that the model 

with the lowest AIC value is the best fit model (Brunham and Anderson, 2002). Bolded 

p-values are significant (P < 0.05), while p-values of non-significant predictors retained 
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in the models are not bolded. The random effect variance for all models was between 

2.16e-12 and 2.4e-12. 

 

 
 

 

Figure 4. Effect sizes for the average linear mixed-effects model with species responsible 

for the majority of the variation in WSG. The blue illustrates a positive effect size, with 

WSG increasing with the predictor variable, and red shows a negative effect size, with 

WSG decreasing with the predictor variable. DEf and AET are not significant while tree 

species and, to a lesser extent, tree size explained most of the variability in WSG. 
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Figure 5: Partial effect plots from the linear mixed-effects model predict wood specific 

gravity variation as a function of a) Height (m), b) Actual Evapotranspiration (AET), c) 

climatic water deficit (DEF) and d) tree species. All models included a random intercept 

of plot ID. The shaded blue areas represent a 95% confidence interval. 
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Figure 6. Tree size and drought stressors linked to variation of wood specific gravity 

across tree species by a) height, b) climatic water deficit, and c) actual annual 

evapotranspiration.  

 

4. Discussion 

The aim of our study was to examine what factors influence the variability in 

WSG across northern Sierra Nevada trees, with the ultimate goal of how this 

understanding can potentially reduce uncertainties in carbon estimates of trees. We found 

that species was the primary factor driving variability in WSG, confirming that species 

are responsible for a high degree of variability in WSG (Fimbel and Sjaastad, 1994, 

Jordan et al. 2008, Phillips et al. 2019). However, within species, we did find that the 

height of the tree contributed to the overall WSG estimates, with taller trees showing 
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lower wood specific gravity than shorter trees.  Finally, across species, we also found a 

small impact of topoclimate, with wood density decreasing with increasing climatic water 

deficit (CWD) and with decreasing actual evapotranspiration (AET). Since wood specific 

gravity has been known to vary with tree size, species, and climate, and biomass 

estimates rely on wood specific gravity, the variance of wood specific gravity across the 

northern Sierra Nevada will have important implications on forest ecology, management, 

and carbon estimates for each species. 

4.1 Species influence 

Our results demonstrate the pervasiveness of species-driven variation in wood 

specific gravity. Variation in wood specific gravity among species can be explained by 

life-history traits in addition to genetic variation among tree species (Muller-Landau, 

2004). Our dataset encompasses tree species with low WSG, such as P. balsamifera ssp. 

trichocarpa and C. decurrens and species with high WSG, such as Q. kelloggii and N. 

densiflorus. Oak species, such as Q. Kelloggii and N. densiflorus, are hardwood trees that 

exist in lower elevation forests in the northern Sierra Nevada which typically are under 

drought conditions and have a higher wood density compared to the higher elevation tree 

species that receive more precipitation. Riparian tree species, such as black cottonwood 

(P. balsamifera ssp. trichocarpa) and quaking aspen (P. tremuloides) tend to have a 

lower wood specific gravity due to the high availability of water, while incense cedar (C. 

decurrens) is a slow-growing species that is typically tolerant to drought, but has a lower 

wood specific gravity mean compared to other drought-resistant conifers in our dataset. 

The drought-resistant conifers in our dataset (P. jeffreyii, P. ponderosa, J. occidentalis, 

and C. decurrens) display higher wood specific values compared to published mean 
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wood specific gravities for North American trees (Miles and Smith, 2009), which could 

reflect a strategy for drought-resistant conifers increasing wood specific gravity by 

increasing latewood tracheid widths as a response to drought (Bjorklund et al. 2017). 

Softwood conifer species (Abies sp. and Pinus sp.) make up the middle range of wood 

specific gravity values and have a lower WSG value than the hardwoods. It is important 

to acknowledge that when we describe species as the primary factor of predicting 

variability of WSG, we are also describing climate, as climate, and in particularly, aridity, 

predicts speciesô distributions (Stephenson, 1998). Increasing our level of understanding 

of species-level WSG variability will more accurately determine stand-level biomass, and 

thus carbon estimates.  

4.2 Size influence 

Although species explains most of the variance of these data, tree size also plays a 

significant role, with taller trees having a lower specific gravity compared to shorter trees 

across tree species, which provides support that functional traits, such as wood specific 

gravity, can be associated with different life-history strategies. Our results highlight 

conventional thinking, with taller trees reflecting the fast-growing, early-successional 

life-history traits that have lower specific gravity woods, and shorter trees reflecting the 

slow-growing, late-successional life-history trait with higher wood specific gravity and 

lower background mortality rates (Chave et al. 2009). Thus, strength and construction 

cost linearly increase with wood specific gravity, with pioneers having lower wood 

specific gravity (vanGelder, Poorter & Sterck, 2006, Larjavaara & Muller-Landau, 2010). 

However, there are a lot of inter-specific variability, as some tree species, such as T. 

mertensiana and P. monticola show a sharp decrease of wood specific gravity with height 
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that follows with conventional thinking, while other tree species, such as P. jeffreyi, P. 

ponderosa, and C. decurrens, which are drought-tolerant conifers, demonstrate a slight 

increase of wood specific gravity with tall trees. This can be explained by inter-tree 

variability, as life-history traits, soil fertility, genetic heritability, and stand characteristics 

can also influence WSG variability, not just tree size.   

4.3 Climatic influence 

Northern Sierra Nevadaôs mixed conifer forests' persistence under climate change 

will depend on tree speciesô ability to cope with drought stress. It is reported that trees 

with denser wood are more able to retain water under drought conditions and have lower 

mortality rates during drought (Nardini et al. 2013, Greenwood et al. 2017). Contrary to 

our expectations, climate does not explain regional variation in wood specific gravity, 

and we did not see the effect of drought stress on WSG. Although wood specific gravity 

slightly increased with climatic water deficit (DEF) and slightly decreased with increased 

actual evapotranspiration (AET), climate was not a factor for WSG variation when 

looking at the effect on all species. The lack of significance of climate on WSG 

variability may indicate that climate may not play a role in influencing wood specific 

gravity across the northern Sierra Nevada, especially for tree species that are already 

existing under drought conditions for many years. Other studies that found no association 

between climate and wood specific gravity distribution include Ter Steege and Hammond 

(2001), which saw a lack of significance in tree-level wood specific gravity and rainfall 

in Guyana, while Williamson (1984) found a lack of significance in the wood densities of 

wetter versus drier sites in Costa Rica. The lack of strong influence of climate on our data 

may be explained from other numerous other factors, such as genetic heritability, growth 
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rate, soil fertility, and competition (Muller-Landau et al. 2004, Hacke et al. 2015, 

Kunstler et al. 2016). In addition, variation in disturbances, such as stand-replacing fires, 

may be more important in future determinations of wood specific gravity variation. 

Further studies elucidating the relationships between species, tree size, life-history traits, 

climate, and disturbance may reveal in more detail the patterns of wood specific gravity 

over a region. In addition, future research can pull apart moisture limitations for each 

season, such as seasonal precipitation, which can be associated with variation in wood 

specific gravity for some coniferous trees (Carrillo et al. 2016). 

4.4 Conclusions 

These results show that wood specific gravity is correlated with species and tree 

height but does not vary significantly across the topoclimatic gradient of the northern 

Sierra Nevada. Accounting for variation of wood specific gravity means across a large 

region can improve biomass estimates. Our results for this study provide insights into 

wood specific gravity variation among tree species in the northern Sierra Nevada, which 

dictates carbon storage estimates and carbon sequestration rates for trees. Managing 

forests for carbon storage and sequestration is a priority with climate change promoting 

an increased fire hazard, overcrowding, and drought stress to forests, and understanding 

the variability of wood specific gravity of tree species in the northern Sierra Nevada 

forests will help managers predict volume, biomass, and carbon inventories for the 

region.  
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Chapter 2. Deriving novel allometric equations for northern Sierra Nevada trees 

using terrestrial laser scanning 

1. Introduction  

Globally, the terrestrial biosphere, and in particular, forests, are estimated to 

provide a net sink of approximately 20% of carbon dioxide emitted by anthropogenic 

sources (Le Quere et al. 2017, Pan et al. 2011). Preserving forests following disturbances 

is thought to be important for anthropogenic C02 emissions uptake (Pugh et al. 2019). 

Creating carbon maps of forests at scales ranging from individual trees, to forested 

stands, to forests across the world rely on biomass equations created using either remote 

sensing data or field data. Specifically, in Californiaôs forests, drought and wildfire 

threaten forests and the wildland-urban interface and emphasizes the need for accurate 

carbon maps in this period of climate change. Long-term carbon storage and forest health 

predictors are complicated to identify without accurate data related to tree biomass (Pugh 

et al. 2018). Managing forests to increase carbon storage can be a strategy to mitigate 

climate change (Zheng et al. 2013) and depends on the availability of data and tools to 

monitor the change in forest biomass and carbon stocks over time (Galik et al. 2009). 

Carbon maps for forests are typically derived from either 1) remotely sensed data or 2) 

the Forest Inventory Analysis (FIA) dataset which estimates biomass across the 

continental US by using biomass equations to convert tree variables into estimates of 

biomass, and thus of forest carbon (Chave et al. 2004). These data create national maps of 

carbon stocks; however, national estimates of carbon are limited by the number of 

uncertainties produced from the variability of biomass equations and the heterogeneity 

present in a forest stand (Goetz et al. 2009).  



  40 

These biomass equations, also known as allometric equations, are useful for 

estimating carbon sequestration of woody vegetation via its relationship between easy-to-

measure tree metrics such as species, diameter-at-breast-height (DBH), and/or height. 

Allometry follows a basic principle in which proportions between tree height and 

diameter and between biomass and diameter follow rules that apply to all trees; with the 

increase of tree size, so increases tree variables, such as biomass, height, or diameter 

(King, 1996, Archibald & Bond, 2003, Bohlman & OôBrien, 2006, Dietze et al. 2008). 

This power-law relationship is applied to predict a tree component (biomass) from 

another tree component (diameter and height) and is based on the mechanical and 

hydraulic constraints of plant growth (West et al. 1999). Allometric equations are 

traditionally calibrated using destructive sampling to measure biomass, which is 

extremely costly, time-intensive, removes trees from the forest, and often does not take 

into account the full range of tree size, species, topoclimatic variability, or local stand 

conditions (Picard et al. 2012, Anderson-Teixeira et al. 2015). There is a noticeable lack 

of destructive sampling across local regions, which leads to under-representing a range of 

tree species and tree size, and also leads to allometric equations which tend to be applied 

outside of the populations which were sampled (Jenkins et al. 2003). Uncertainties are 

reduced with large sample sizes, as small sample size allometric models systematically 

overestimate carbons stocks in North America (Duncanson et al. 2015).  

Terrestrial laser scanning (TLS) can be a solution for reducing uncertainties in 

allometric models, especially through direct estimates of AGB, as it is a way to increase 

sample sizes and reduce biases (Disney et al., 2019). TLS data can be used to characterize 

forest structure at a tree level, and tree parameters can be directly measured from the TLS 
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point cloud without sampling bias. TLS functions as an effective non-destructive 

alternative to destructive sampling, TLS can be used to sample large and hard-to-find 

trees as easily as the small and common tree species. As large trees can make up a total of 

50% of the total live tree AGB, and inclusion of large trees in allometric models are vital 

to reducing uncertainty (Ahmed et al., 2013). However, the mm-accurate TLS point 

clouds introduce their own set of limitations and trade-offs, including low point density in 

the upper canopies of forests and occlusion in dense, tall forests (Burt et al., 2018).  

TLS-derived AGB is estimated by calculating tree volume using quantitative 

structure models (QSMs; Raumonen et al., 2013), which reconstruct tree metrics by 

fitting cylinders to the trunk and branches. The QSM method estimates individual tree 

AGB when multiplied by wood specific gravity; however, wood specific gravity 

introduces more uncertainties in allometric models (Chave et al., 2006, Swenson and 

Enquist, 2007, Mitchard et al., 2013). QSMs have been applied for AGB estimation in 

boreal and temperate forests (Roumenen et al., 2015) and tropical forests (Disney et al., 

2018, de Tanago et al., 2017). Calders et al. (2015) found that TLS derived AGB 

estimates in Australia had a high agreement with destructive sampling reference AGB 

(CV RMSE= 16.1%) compared to allometric model derived AGB (CV RMSE = 46.2% - 

57%). Large tropical tree TLS-QSM derived AGB found a slightly higher agreement (CV 

RMSE = 28.37%), outperforming the accuracy of pantropical allometric models, 

providing evidence supporting a trend that TLS-derived volume c account for tree 

structure more effectively than allometric models and results in AGB estimates that are 

unbiased by tree size (de Tanago et al. 2017). Burt et al. (2013) found that volume 

derived from TLS data can be recreated to a 10.8% underestimate, and Wilkes et al. 
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(2018) found QSM recreated AGB to 1.4% overestimate for a local urban allometric 

equation in a London borough. TLS estimates of tree height have been found to be 

accurate compared to destructively sampled trees (Calders et al. 2015, Stovall et al. 

2018), and since standard allometric models underrepresent large trees, TLS provides a 

unique opportunity to unbiasedly sample large trees. 

Here, we developed novel TLS-derived allometric models across 16 tree species 

in the northern Sierra Nevada. Californiaôs northern Sierra Nevada forests have 

experienced an increase in drought and wildfire which threatens forests, and land 

managers are encouraged to manage forests to maintain forest health and ecosystem 

productivity (California Global Warming Solutions Act of 2006; Assembly Bill 32 (AB 

32); Núñez, Chapter 488, Statutes of 2006). In order to create novel equations, we aim to 

improve upon the destructive harvesting approach and we will address the following 

limitations of that approach; i) small sample sizes ii) lack of full range of tree size 

sampled and iii) lack of diverse range of tree species and iv) region-specific equations 

that capture topoclimatic variability. We compared TLS-derived allometric models 

against existing national equations and evaluated the variability of TLS-derived 

allometric equations across a topoclimatic region using two water balance variables; 

climatic water deficit and annual actual evapotranspiration. We also assessed the use of 

QSMs for measuring tree structure metrics such as DBH and height. The effectiveness of 

TLS in estimating species-specific AGB to create novel allometric models may have 

large implications for future AGB and carbon stock estimations for the northern Sierra 

Nevada in a time of drastic change in forest biomass stocks. 
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2. Methods 

2.1 Area of Interest (AOI) and plot selection  

Our goal was to generate novel allometric equations for tree species in the 

Northern Sierra Nevada Mountains in California. As such, our primary areas of interest 

(AOIs) included the Lake Tahoe Basin Management Unit (LTBMU) and Plumas 

National Forest (PNF). These sites cover a large topoclimatic gradient spanning in 

elevation from 215 to over 2818 meters above sea level and cover approximately 

5,200km2. The northern Sierra Nevada Mountains experience a Mediterranean climate 

pattern of long, dry summers and cool, wet winters. Our dataset encompasses a large 

topoclimatic gradient and ranges in temperature from -9  to 28 , in actual 

evapotranspiration (AET) from 348 to 476 (mm), and annual climatic water deficit (DEF) 

from 70 to 188 (mm) (Morrison, 2018).  

Plot locations in the LTBMU and PNF were selected via a two-stage sampling 

design in which a grid of 10 km2 was established covering the LTBMU and PNF, and 1 

plot within each grid cell was randomly sampled, constrained to locations with > 10% 

tree cover taken from a LANDSAT analysis, and avoiding locations on private land, with 

heavy disturbances, such as recent fire history and logging based on CALVEG: A 

classification of California Vegetation mapping methodology (USDA Forest Service, 

1981). In the end, we selected 108 plots located in California (Figure 1). 
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Figure 1. TLS plots (N=108) across the Plumas National Forest and Lake Tahoe Basin 

Management Unit (LTBMU). Three additional plots were placed outside of the Plumas 

NF and LTBMU boundaries to sample species that are not typically found in the Plumas 

NF and LTBMU, but occur outside of these areas in the northern Sierra Nevada. 

 

2.2 Plot setup, initial field mensuration, and terrestrial laser scanning 

Our plots were designed to represent a 30m x 30m area, with a 5m buffer on all 

sides. TLS data were acquired using a Riegl VZ-400i Terrestrial Laser Scanner, with 

specifications shown in Table 1. This instrument records multiple-return LiDAR data and 

collects data about the position and orientation of points in three-dimensional points. The 

TLS was mounted on a tripod, leveled at each scanning position, and the height of the 

tripod was adjusted at each to be higher than any surrounding shrubs or undergrowth to 

avoid occlusion. Each plot was scanned at 9-13 separate scanning positions (depending 

on the tree density of the plot) with terrestrial LiDAR during 3 field seasons from 2017 to 
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2019. Each scan was taken at an upright (0°) position and at a 30° tilt scan (to capture the 

tree canopies) at each scanning location. Additional scans were added to each plot 

depending on line-of-site from the TLS to each of the four reflectors located at four 

corners interior to the plot to establish a stable point across space and time and act as tie-

points to co-register scan positions. Point clouds from each scan position were co-

registered together using RiSCAN Pro software (Riegl Laser Measurement Systems 

GmbH, 2020). After coregistration, each TLS scan was registered to an airborne laser 

scanning (ALS) base map using LAStools (RapidLasso GmbH, 2019) and 

CloudCompare (Girardeau-Montaut, 2020), with an average point density of 7.86 points 

per cm2 and 125,830,459 average number of points per plot and produced a detailed point 

cloud for each plot (Figure 2, Hartsook, 2021).  

During the initial setup of plots in 2017, each plot was stem mapped in the field. 

An experienced forester identified the most dominant tree species in each plot, and any 

remaining tree species with a diameter Ó 15 cm were identified and considered for stem 

mapping. The distance and azimuth to each tree within the plot were recorded from the 

plot center, which resulted in a complete stem map of tree species in each TLS plot 

(Hartsook, 2021).  
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Figure 2. A TLS plot colored with a height ramp in meters a) as seen from a side view b) 

from a top-down view. Plots were clipped at 30 by 30 meters with a 5m buffer, and any 

noise associated with clipping the point cloud was taken care of by the 5 m buffer. As 

seen in a), the TLS point density decreases with height, as the upper canopies of tall trees 

are harder to reach with the TLS. 

 

 
 

Table 1. Riegl VZ-400i scanner settings for TLS multiple return data acquisition. 

 

2.3 Ancillary data 

Wood specific gravity sampling was outlined in Chapter 1. A total of 329 trees 

across 89 plots were cored for wood-specific gravity at DBH with a 5.15mm wide 
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increment borer. We removed pith and bark for each core prior to oven drying. For each 

tree core, we measured the basic wood specific gravity (WSGb) as the ratio of oven-dried 

mass to green volume (WSGb =oven dry mass/ green volume / ɟ water) (Williamson and 

Wiemann, 2010). We obtained individual estimates of wood-specific gravity and 

calculated a species mean to multiply against TLS-derived volume to get AGB (equation 

1). Each core sample was oven-dried for 48 to 72 hours in a well-ventilated oven at 101-

105°C until the mass remained constant (Williamson and Wiemann, 2010). Green 

volume was measured using the water displacement method (Ilic et al. 2000), and the 

green volume of the sample is equal to the measured mass of the displaced water.  A 

beaker was filled with deionized water and each sample was forced underwater using a 

small pin, with careful attention paid to each sample not touching the walls of the beaker. 

We obtained individual estimates of wood-specific gravity and calculated a species mean 

to multiply against TLS-derived volume to get AGB.  

2.4 Tree selection 

Our goal was to select trees for analysis that covered the diversity of species, size 

classes, and climatic conditions present across our study area.  To accomplish this, we 

first created a stem map using virtual mensuration techniques, linking these stems against 

field-identified species. Each TLS point cloud was normalized to the height above ground 

using LAStools (RapidLasso GmbH, 2019), filtering all points within 5 cm of the 

standard DBH height 1.37m (1.32-1.42m). These DBH "slices" were converted to rasters 

at 1cm resolution (Figure 3).  Each raster represented a TLS plot and trained researchers 

mapped diameter and tree species to each circle, which allowed for stem positions and 

DBH to be determined.  Finally, these virtual stems were linked against all plot level 




















































































