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Abstract

The biomass of trees is estimated by using allometrictieqsawhich use simple
tree metrics, such as diameter and height, to predict the size of the tree. Biomass is
extremely important for determining carbon sequestration rates and carbon mapping in
forests, as an indi vi du dtypercenteabdrs Hdweverma s s i
estimating the biomass of the trees is traditionally accomplighetie use of allometric
equations calibrated by destructively harvesting trees in the Relguiring destructive
sampling to calibrate these models oftertetn small sample sizes and a lack of a
complete range of tree sizes and species sampled. An alternative solution to destructive
harvesting useerrestrial laser scanning (TL&) estimatéhevolume, diameterand
height oftrees in the fieldand comhie these with estimates of wood specific gravity
These data can then be used to generate allometric equations without many of the
limitations of destructive sampling approaches. In our analysis, we scannphbts08
located in the northern Sierra Nevadée used TreeQSM to estimate volume for
sampled trees and determined the mean species wood specific gravity to estimate
biomass. We compared our QSM tree metrics against metrics measured in the field and
ran a nodinear mixed effects model to determine #ifect of climate on our allometric
equations. Our results suggest that our two topoclimatic variables, climatic water deficit,
and actual evapotranspiration, did not affect our biomass equations. We then used three
allometric equation forms to estimat@imass using two different tree parameters, height,
and diameteWe found that TLS can be used as a rapid method for estimating volume,
height, and diameter, and we created spespesific allometric equations for trees across

the Sierra Nevada that mhgve important applications for largeale AGB estimation.
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Introduction

Of the total carbonited byanthropogenisources, almodtalf of the
anthropogenic emissiorseabsorbed by terrestrial and ocean sifanadell et al.
2007). Since anthropogenic carbon emissions have grown faster tham&s)
identifying forests for their potential to act as carbon sinks is vital to mitigate excess
anthropogenic carbon emissions (Canadell and Shultze, 2014). Carbon stock estimations
rely on accurataboveground biomass (AGB) dagds. These AGB estimates nahbe
easily measured, as dirgoeasurements of biomatsaditionally requirediestructively
sampling trees and weighinigem in the field (Picard et é&012). Since harvestingses
and weighing them in the field is timetensive and costly, most research uses allometric
equations to estimate biomass. Forest AGB estimates typicallyterende=d by using
tree structuraietrics, such as diametatbreastheight (DBH)and heigh in allometric
equations that then convert tree structure metrics into biomassdrah estimates
(Chave et al2005). Allometric equations are an indirect way to estimate biomass through
easilymeasurable variables such aandeter and height (Brown al. 1989) but
destructively harvested a small number of trees to creataetlic equations (Chave et
al. 2005).

Allometric equations can produce large uncertainties when extrapolated to
populations that have littk® no data, and maratlometric equaons are built with
relatively small sample sizes, such as a mean destructive sample size of 23 for Jenkins et
al. (2003), 81 for Lambert et al. (2005) and a few hundred for Woodall et al. (2010) and
Chojnacky et al. (2014). These allometric equatmmested withsmall sample sizes are

oftenapplied beyond the population they sampled from, cannot accurately represent the



biomass of a region, and thus systematically overestimate field carbon skbmihn

America (Duncanson et &015). Duncanson et g2015) also suggestithat allometric
equation parameters vary drastically with sample size, and the error of biomass prediction
when using small sample sizes may extend well above errors reported in Chave et al.
(2004).

Since the limiting factor for ceging accurate allometric equations historically is
destructively harvesting trees, an alternative is to relyeorestrial laser scanning (TLS)
which is a very precise and easily portable LIDAR technology that can recreate forest
structure to millimetelevel accuracies (Disney et 2019). Volume can be very
accurately estimated from th&.3 point cloud (Raumonen et 2013), and when
multiplied by wood specific gravity, can lead to a + 10% uncertainty & derived
AGB (Calders et aR015). Understnding the variability of wood specific gravity across
a topoclimatic gradient is crucial for predicting biomass across a region (Chéve et a
2006). The combination of region and spedpscific wood specific gravity values, with
increased sampling witthe TLS approach, can produce novel allometric equations for

the northern Sierra Nevada tree species
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Chapter 1. Variation in wood specific gravity acrossnorthern Sierra Nevada forests
Abstract

Allometric equations are widely used to predibbveground biomasand carbon
stocks in forests. These equations use-easyeasure tree parameters, such as diameter
at-breastheight (DBH)and heightWhen combind with stem taper or terrestrial laser
scanning (TLS) approaches to volume estimation, allometric equatiqunise wood
specific gravity as an important predictor of tréenass.Thus, precise estimates of
wood specific gravity, calculated as overy mass divided by green volume, can help
reduce uncertaties in allometric equation®deasurements of wood specific gravity may
be particularly important inorthern Sierra Nevada foresthich encompass diverse
temperate mixed@onifer ecosystems that wilkiely see a drastic shift in species
composition and trait variation due to climate chasge historical anthropogenic
influence To reduce biomass bias at an individual tree level, and because small sample
sizes can lead to uncertainty, it is importanéxamine how wood specifiaayity varies
across a regionVe calculated wood specific gravity of 329 cores across 16 different tree
species in Plumas National Forest and the Lake Tahoe Basin Management Unit to
understand how it varies along a climate gadetation gradient in northern Seerr
Nevada forests. Linear mixedfecs models showed thamost of the variation imood
specific gravity was explained by speciasd, to a lesser extemitee height, with no
significant effect of climate when lookireg climatic water deficit (DEF) and actual

evaptranspiration (AET) as predictor variables.



1. Introduction

Forests contain approximately 45% of terrestrial carbon (Bonan, 2008) and are
estimated to contain at least 522 Pg in live abgneeind bienass inforests (Santoro et
al. 2021). As a result, these ecosystems are responsible for approximatelythalf of
carbon dioxide (Cg) fluxes of all terrestrial biomes and sequestered roughly-319+
PgC yr1 during thdast 10 years (Le Quere et 2018). Therefore, estimating forest
biomass and carbon stocks is important for understanding and modeling the global carbon
cycle to offset anthropogenic carbon dioxide emissions. The global estimates of carbon
stocks and sinks are uncertain (Houghton, Hall, &t&d#09) and carbon stocks are
typically estimated using remote sensing methods that estimate biomaks geeacales
(Avitabile et al.2012). Carbon maps and sequestration rates need adouséte
biomass estimates; however, there can be largedfiites in biomass estimates
especially when derived from srhabmple sizes (Mitchard et &013). In California,
landowners and lanthanagersnustdevelop land management strategies to improve
forest health related to fire (Hurteau et al. 2011) and caf®@ann et al. 2012

Carbon maps at any scale using either remote sensing and/or field data rely on
allometric equations relating parameters that are measured in the field, such as-diameter
at-breast height and height to predict abgveund biomass artierefore individual tree
stocks (Jenkiset al. 2003). Allometric equations for forested systems require trees to be
destructively sampled and have been shown to be sensitive to sample size. For example,
parameters for allometric equations are systenibtioesed relating to small sample
sizes, and thus using allometric equations developed with small sample sizes may

overestimate field carbon stocksNiorth America(Duncanson et a015). Since



destructively harvesting large sample sizes is not feafib most studies, researchers
can use wood specific gravity measurements obtained through coring a tree to increase
sample size and reduce biomass bias at the individual tree level (Duncanson et al. 2015).
Including wood specific gravity as an importgmedictive variable in abovground
biomass models, in addition to diameter and height can reédebes of allometric
models Chave et al2014. However, it is important to understand the variability of
wood specific gravity because ignoring the ahiiity results inthe poor predictive power
of aboveground biomas equations (Baker et al. 2004

Wood specific gravity is defined as the ratio of oy mass to green volume
(unitless) and is different from wood density which is defined as the rhassaod per
unit volume at a given moisturecont¢nk g m jJ ) and i s a key func
plant (Williamson and Weimman, 2010). Wood specific gravity is closely tied with life
history traits and can vary with diameter, growth rate, reproduction timing, and
mechanical strength of a tree and ipaortant to plant fornand function (Carlquist et al.
1977, Enquist et alLl999). Structure determines wood specific gravity, with higher wood
specific gravity trees having a greater proportion of cells with thicker cell walls
(Simpson, 1993). Wood specifitavityreflecs a pl ant 6s caisbon inve:
negatively associatedith growth rate (Enquist et @999, MullerLandau, 2004,
Wikberg & Ogren, 2004, King et al. 2005), and is positively associated with longevity
and survival (MulleiLandau, 2004)Overall, longlived, slowgrowing trees tend to have
a higher wood density compared to sHiwed, fastgrowing, pioneer species
(Saldarriaga et al. 1988, Swaine & Whitmore, 1988, Wiemann & Williamson, 1988).

Conventional thinking states that the fgetwing pioneer species are thought to allocate



fewer resources to strength, while stigrowing, climax species are thought to allocate
more resources to greater strength. However, Larjavaara and {Maiidau (2010)
guestioned whethéhelower wood densyt of the same strength leads to high
maintenance costs but lower construction costs. High wood density also provides
additional benefits other than strength, including resistance to pathogens and defense
against physical damage (Rowe and Speck, 2005).

Plants can respond to drought stress by increasing wood density, for example
wood density has been shown to increase withtg (MartinezCabrera et aR009).
Variation in fiber trails, specifically fiber lumen diameters which relate to cell wall
thicknes, is responsible for driving most of the variation in woedsity (Martinez
Cabrera et aR009). Swenso& Enquist (2007) found a strong relationship between
wood density in seed plants and variation in temperature, demonstrating key functional
trait vaiation along an abiotic gradient. Wood density has been shown to vary across a
latitudinal gradient (Wiemann & Williamsg2002), in addition to climatic and soil
nutrient gradients (Swenson &guinest, 2007). Wood density has been found to be
responsiveo drought, with density increasing with water stress as conduit wall
reinforcement leads to cavitation resistance (Hacke et al. 2001). Though abiotic factors
can lead to variation in wood density, the genetic component of wood density cannot be
ignored.Wood density demonstrates high heritability, suggesting that abiotic forces may
not be the main driver of variation in wood densitya local level (Chave et &006).

The controlling factor of genetic and environmental factors on specific wood
graviy is called the Otree eff ereaaiabilityd i s r es

(Bouriaud et al. 2005 As forests are increasingly under threat from climate change,



drought stress on forest ecosystems may lead to variation in wood specific gvhigty,

will strongly influence the carbon storage capacity of entire forests and may be an
indicator of declining ecosystem productivity. Spatial and genetic variability in wood
density leads to variation in abegeound biomass calculations. Therefores itritical to
understand wood density variation across individual, local and regional scales to reduce
uncertainties in abovground biomass estimates of a forest.

Here, we investigated the relationship between wood specific gravity and tree
species, tsucture, and climate across a topoclimatic gradient in northern Sierra Nevada
forests, CaliforniaThe Sierra Nevada mixenifer forests are increasingly vulnerable
to drought stress (Van Gunst et 2016), overgrown forests, and frequently more
commonstandreplacing fires as a result of climate change, human activity, and historical
fire suppression. Predicting the variability of wood specific gravity of the Sierra Nevada
tree species may impact regional biomass estimates, andffiactsarbon stock
estimates. We hypothesized that tree species and size would be the dominant driver of
wood specifiggravity variability, with wood specific gravity increasing with tree size.
Further, we hypothesized that climate may play a role in influencing woodispecif
gravity, with wood specific gravity increasing with drought stress.

2. Methods
2.1 Area of Interest (AOI) and study species

The northern Sierra Nevada is dominated by mic@aifer forests that are
warming at a mean rate of 1 to 2.5 ° F, and the ptimpoof precipitation falling as rain
versus sow is increasing (North et &012). The climate of the Sierlevadais

Mediterranean, with long dry summers and cool, wet winters with increasing
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precipitation as elevation increases (van Mant§eB8tepheson, 2007, Guari& Taylor,
2005). The Sierra Nevada forests start with lower elevation chaparral and woodland
foothills before proceeding into ponderosa pine and mixed conifer forests. Many tree
species in the Sierra Nevada are drougldrant, including?. ponderosaP. jeffreyii Q.
keloggii C. decurrensandJ. occidentalis

The northern Sierra Nevada forests extend from Lake Tahoe to the southern
border of Lassen National Park and across a large topoclimatic gradient and are primarily
dominated by nxed-conifer forests. Within the Northern Sierra Nevada forests, we
selected two primary areas of interest (AOIs) for our analysis: the Lake Tahoe Basin
Management UniilLTBMU) and Plumas National Forest. These two sites cover a wide
range of the topoclinte variability foundin the Northern Sierragpvering elevations

ranging from215 to 2818 meters above sea ldi@ble 1).
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Climate Ranges by Tree Species

Annual Annual Actual

Common Sample Elevation Temperature Precipiation Annual Climatic Water Evaportanspiration Range
Type Scientific Name name size (n) Range (m) Range (°C) Range (mm) Deficit Range (mm) (mm)
Angiosperm 63
Notholithocarpus ., 11 890-944  -2-27 3826-3921 13-147 457-471
densiflorus
Populus balsamifera Black 14 14721917 525 20333117 140- 159 403-437
ssp. trichocarpa Cottonwood
Populus tremuloides S:;:'T”g 26 1817-1917 -7-25 2593-2896 166-177 392-417
Quercus kelloggii  Black Oak 12 760-1618  -4-27 3338-40571 124-177 425-461
Gymnosperm 211
Abies concolor White Fir 17 1443-2334 -8-26 2786-3353 124-175 363-445
Abies magnifica Red Fir 32 1611-8364 -8-25 2372-3353 109-176 348-422
Calocedrus Incense 18 890-2019  -5-27 2932-3812 133-170 300-454
decurrens Cedar
Juniperus Western 9 1443-2627 -5-25 3300 168 415
occidentalis Juniper
Pinus albicaulis Whitebark 6 2817 7-24
Pine
Pinus contorta ;S’SEPD‘E 24 1782-2334 -7-25 2372-2993 139-177 352-414
Pinus jeffreyi Jeffrey Pine 23 856-2222 -7-25 2766-3668 124-177 362-445
Pinus lambertiana  Sugar Pine 19 1228-2002 -7-26 2766-3674 124-147 390-463
Pinus monticola Western- 16 1865-2208 -7-27 2799-2928 125-156 375-404
white Pine
Pinus penderosa Ef:‘”:em“ 20 890-1780 -7-27 2814-3668 124-188 395-438
Pseudotsuga . -
fots Douglas Fir 17 535-1542  -5-27 3338-3916 143-177 268-272
menziesil
Tsuga mertensiana 0NN 10 718-2548  -9-23 2512-2748 109-139 377-381
Hemlock

Table 1.Climate variable minimum and maximums for each tree species, with a
noticeable lack of climate data fBmus albicauls due to lack of climate data attributed
to this species.
2.2 Tree selection and attribution
Plot locations were chosen as part of a larger terrestrial laser scanning (TLS)
study across the northern Sierra Nevada, and our area of interest (AOI) irf89yulets
| ocated in Californiads northern Sierra Ne
locations had to have more than 10% tree cover based on a LANDSAT analysis and were
stratified by elevation. In addition, we excluded plot locations fallimgcent burn scar

or recently logged land. Pltications were then stratified and randomly sampled

according to a tw«stage design to sample representative forest types in Plumas National
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Forest and the Lake Tahoe Basin Management Unit. First, 10idmedis were placed
on public lands within the boundaries of the AOIs. Secondly, two plot centers were
randomly sampled from within each 10km grid cell within 60 m to 120 m of the nearest
access road. This resulted in a total of 89 fléigure 1), inaiding3 opportunistic plots
placed in Tahoe National Forest to samplaiper occidenatligndPinus monticola
species, which needed additional plots placed due to pervasive ootidentaliy and
rare occurrence. For each plot, we assigned all clidette(Morrison, 2018) for the
period of 2019 (Table 2Pur climate dataset was downsampled from a continuous
geospatial database using statistical downsampling techniques. While downsampling
climate variables can incorporate fiseale topographic feates, downscaling climate
data can result in worse performance for annual minima (Fowler et al. 2017).

Two water balance parameters included in these data are climatic water deficit
(DEF) and actual evapotranspiration (AEandare weltdocumented to cordf for
drought stress on trees and can dictate the range wherpdosessoccur (Stephenson,
1990, Lutz et al., 20)0DEF and AET are derived from potential evapotranspiration
(PET), rain, and snow to determine available water supply, with AET=RBEF
(Morrison, 2018). Climatic water deficit is the amount of evaporative demand that is not
met by how much water is available and is an indicator of how arid a site is, while actual
evapotranspiration is the evaporative water loss taken from how muchisvaterlable
at a site and represents how much water is available for consumption (Stephenson, 1990).
AET and DEF are well correlated with vegetation distribution compared to other climate
parameters, such as temperature and precipitation (Stephens@n, F8dhis reason, we

are focusing on DEF and AET as a priori variables, not only to stratify sampling across
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our AOI but also as a potential indicator of variability in wood specific gravity across the
climate gradient of northern Sierra Nevada ford3list-level topography variables, such

as aspect or elevation, were not included in the correlation analysis or linear mixed
effecs models because the climate variables used in this study, such as water deficit
(DEF), actual evapotranspiration (AET), ration, precipitation, and snowfall were

calculated using topographic predictors at a variety of scales (Morrison, 2018)

Climate Variable Unit
Maximum Temperature (Tmax) “C
Minimum Temperature (Tmin) °C
Average Temperature (Tave) °C
Actual Evapotranspiration (AET) mm
Climatic Water Deficit (CWD) mm
Evapotranspiration (ETO) mm

Mean Annual Surface Radiation (RAD) W/m?
Annual Precipitation mm

Annual Snow mm

Table 2.All climate variables (Morrison, 2018)ereassigned to the virtual stem maps
created for each plot used in sampling.

Oncethe plot centex were established, we set up 30m m3flots with a 5m
buffer, for our field data collection. For each plot, we created stem maps within the plot
by assigning tree species and DBH to each tree in the plot. In addition to the stem maps,
eadt plot was scanned using a terrestrial laser scanning (TLS) instrument, and the
resultant scan was used to create a "virtual" stem map which in¢heleakition and
DBH for each tree in the plots. TLS collection, preprocessing, and virtual stem mapping

are described in more detail in Hartsook (2021). These virtual stem maps were linked
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with the field-collected stem maps, as well as thedotl topoclimate data to create a
final stem map that contained the position, species, DBH, and local topoclineaieho

tree in the plots, foN= 5,873 trees mapped.

O TLS Plots
[ Plumas National Forest
[ Tahoe National Forest
[ Lake Tahoe Basin Management Unit |+

Figure 1. TLS plot locations (n=89) across Plumas National Forest and Lake Tahoe
Basin Management unit, with three opportunist plots placed in Tahoe National Forest to
samplel. occidenatalis and P.@nticola We included one plot located in Nevada
(located in the Mt. Rose Wilderness) to santplalbicaulis

From our tree database, we performed stratified sampling to select trees we
planned to take wood spécigravity measurements from, to trygsample as evenly as
possible across the multivariate stratification space. We stratified across tree species,
diameter size class, and climatic water deficit (DEF). We determined each species'

climatic water deficit range and sampled evenly across CWD mr@%ins ranging from

50 mm to 200 mm. Within each CWD bin, we sampled adb@&id ranging from 15 cm
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to 130cm in 10 cm bins. In total,2® trees were selected across 16 tree species and 12
size classes. Figure 2 shows the sample sizes for each of theséha range of DBH

size classes sampled extended from 15 cm to 130 cm with the goal of sampling evenly
across all DBH size classes for each tree species. Figure 2 illustrates that just under half
of our total number of samples were collected in th23.&nd 2535 cm DBH size

classes; this is due to many of the smaller diameter trees, inclédipglus tremuloides,
Quercus kelloggii, Notholithocarpus densiflord® not get very large even as adult trees.

In addition to coring, we collected tree measuwrata (329 in total) in the field, including
DBH (diameterat-breast height) using a DBH tape, tree height, crown spread, and lowest
live crown using standard forest mensuration equipment and techniques (National Core

Field Guide, 2019) using a laser ranigdér (TruPulse 360 Laser Rangefinder).
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Figure 2. Sample sizes of cored trees to obtain wood specific gravity measurements for
each 10 cm DBH bin ranging from 15cm to 135 cm. Th&3%and 2535cm range
consisted of a majority of cored trees becaoseestree species, for exampke,
tremuloides, Q. kelloggii, N. densifloriege smaller in diameter compared to mixed
conifer species that become large,{atiecessional tree species.

Climate variables were calculated at a plot level to test the Mésiaifiwood
specific gravity with climate across a tree species range in the northern Sierra Nevada
forests. We ran a Pearson correlation test on all the climate variables (DEF, AET, ETO,
Tmin, Tmax Tave RAD, rain, and snow) to evaluate potential clienptedictor variables
and selected uncorrelated variables (r <0.65) with variance inflation factors less than 5

from the Acaro package (Weisberg, 2019)

to see which pairs of variables are highly correlated.§5) and which variables were
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selected randomly from each of the correlated pairs. The final set of predictor variables,
after removing correlated pairs, included tree species, height, DEF, and AET, and these
variables were used in subsequent linearechizffects models (Table 3). In Figure 4, we
illustrated the predictor variables and their proxy variables, with tree height as a proxy for
diameter and linked tree size to WSG vaoiatiwhile DEF and AET were proxiésr
temperature (fin, Tmax, Tave) and precipitation and snowfall variables (annual rain and
snow) and demonstrated the link of water availability (or drought stress) to WSG
Variation (Table 3).
2.3 Field sampling and sample processing

We located our target trees identified in our samp$tgtleduring a subsequent
site visit. For each selected tree we assessed the tree for signs of disturbance such as
i nsect damage or disease, and only O6heal th
Each target tree was cored using a 5.15mm wide increlnoeer at DBH until it reached
thepith and allextractedcores were stored in a dry place. If rot was found in the tree, the
core was discarded and the target tree was either cored again from a different direction, or
a new tree was chosen of the sapecges and DBH bin. No trees were cored more than
twice to ensure that the tree could survive sampling.

For each core, we measured the basic wood specific gravity (/dS@&e ratio
of ovendried mass to green volume (WStven dry mass/ greamlume /; wat er )
(Chave et al2006). Each core was defined as a-patibark sample with both pith and
bark removed, and samples were cdeied for 48 to 72 hourns a wellventilated oven
at 103° C until mass was constant. After the core was dried, we weggddsample to

the precision of 0.01 g before calculating the green volume by the water displacement
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method (llic et al2000). The water displacement method provides more reliable
estimates than the caliper method for calculating the volume of regularegdar-
shaped samples (Chave et26l06). A beaker was filled with deionized water and each
core sample was forced underwater with a small pin, with careful attention paid to each
core not touching the sides or bottom of the beaker. The measuredfrttassisplaced
water is equal to the green volume of the sample.

Hardwoods exhibited a much higher mean WSG (0.7Btmrcus kellogiand
0.66 forNotholithocarpus densiflorug€pompared to the softwodeinus, Abiesand
Populussp. P. blsamiferaspp) (Figure 3, Table 2)There was substantial WSG
variability not only across tree species but great variation within each tree species, with
values ranging as much as 0.3 T@uga mertensian@ able 2).
2.4 Analysis

Our goal was to test for the effectdadirection of climate, species, and structure
on wood specific gravity. Our full list of potential predictor variables is described in
Table 3. Before we began our analysis, we ran a Pearson correlation test on all variables
(DBH, Height, DEF, AET, ETOT min, Tmax Tave RAD, rain, and snow) to evaluate
potential predictor variables and selected uncorrelated variables (r <0.65) with variance
inflation factors | ess than 5 from the fca
multicollinearity. Refer to Tdke 3 to see which pairs of variables are highly correlated (>
0.65) and which variables were selected randomly from each of the correlated pairs. The
final set of predictor variables, after removing correlated pairs, included tree species,
height, DEF, and\ET, and these variables were used in subsequent linear mixed effects

models (Table 4). Plot ID was included in this analysis to account for the random effect
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that plot locations contribute, as the plot locations are only a small subset of the region
we want to make an inference for.

Link to WSG  Correlated
Predictor Variable Variation Variables Description

Tree Species

Height Tree size Tree height in meters

Diameter Tree diameter at 1.37 m in centimeters
Climatic Water Deficit Climate stress Water balance metric at a plot level in milimeters; amount of evaporative
(DEF) - demand that is not met by available water
Actual Annual Climate stress Water balance metric at a plot level in milimeters; Evaporative water loss of
Evaopotranspiration (AET) - available water for consumption

Annual Snow  Annual snow (mm)

Annual

S Annual precipitation (mm)
Precipiation precip (mm)

Minimum

Mean temperature of the coldest menth (°C)
Temperature

Maxirmum

Mean temperature of the warmest month (°C)
Tempearture

Average

Mean annual temperature (°C
Temperature ’ P )

Radiation Mean Annual short-wave downelling surface radiation (W/m?)

Table 3.Candidate predicted variables randomly chosen from each correlated pair and
their associated proxy variable. Methods for deriving these climate variables calculated
for each plot are described in Morrison et24118.
To assess trends in wood specific gravity as a function of our predictor variables,
we used |l inear mixed effects models via th
(Bates &al. 2015) in R version 4.1.(R Core Team, 2021). Wood specific grguwias
tested on the paretbwn sebf predictor variables (Table &nd plot ID was included in
each model as a random effect to account for any variation, as the plot locations are only
a small subset of AOI about which we want to make an inference. kvgated scaling
the predictor variables and decided to use unscaled variables to ensure ease of

interpretation, and scaling did not produc

package in R (Barton, 2020) that performs model selection using every combofatio
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our chosen predictarariablesand ranks the best fitting models according to the lowest
Akai keds I nformation Criteri scorewhichr ect ed f
prefers simpler models with fewer parameters if the change in(&@ |c)G2
(Burnham & Anderson, 2002. S i ncaas <2dér th€top models returned in by the
Adredged function, a model averaging appro
package) was used with ¢<BModelayeragingnanks model s
selectel models and uses estimates for each candidate model and their respective weights
and can provide a robust set of parameter estimates (Burnham & Anderson, 2002) before
averaging these across multiple models to avoid the issue of picking one model with a
g AC. <2. The goal of model averaging is to use Akaike weights for predictor variables
that are on the same scale and to incorporate models with similar support in the data. The
outputs othemodel average are the parameter estimates of 4 different madelgea
interpreted the O6conditional 6 subset coeff
e st i ma tvalses, &nbl Pseuekp values were calculated (Tabldong with the
effect sizes of each predictor variakbe the averaged model (Figurg #seud-R?
values were produced using the Ar.squaredsG
(Barton, 2015).
3. Results

3.1 Linear mixed effects model esults

For each tree species, we calculated mean, variance, and standard deviation of the
WSG values (Figure 3Y.he distribution of wood specific gravity ranged greatly for some
species (0.3 fof. mertensianaand ranged little for other species (0.1 For

lambertiang. Q. kelloggiexperienced the highest WSG with a mean of 0-4272 while
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P. balsamifera spprichocarpaexperienced the lowest WSG with a mean of 0.39 +
0.041 (Table 4). Hardwood species exhibited a much higher mean WSG (0.72 for
Quercus kellogiand 0.66 foNotholithocarpus densiflorug€ompared to the softwood
species (Figure 3Yhere was sutiantial WSG variability not only across tree species but
variation within each tree species, with values ranging as much as Usufya

mertensiangTable 4).

Common Mean Standard Diameter Height Miles et al. (2009)
Scientific Name Scientific.Name name WSG Deviation of WSG Range (cm) Range (m) Mean WSG
Abies concolor Abies concolor White Fir 0.439 0.050 16.5-131.3 38-58.6 0.37
Abies magnifica Abies magnifica Red Fir 0.481 0.066 10.0-155.4 7.8-52.7 0.36

Incense -
Calocedrus decurrens Calocedrus decurrens Cedar 0.398 0.066 12.0-124.7 89-34.2 0.35
Juniperus occidentalis ~ Juniperus cccidentalis j’tji?;:’n 0471 0.075 224-756 78-13.7 0.45
Notholithocarpus Notholithocarpus Tan Oak 0.661 0.047 130-344 11.8-24.4 0.58
densiflorus densiflorus
Pinus albicaulis Pinus albicaulis m;tewk 0516 0.070 13-393 18-135 043
Pinus contorta Pinus contorta ;Tr:jegem'e 0.499 0.056 7.5-83.7 8.7-245 0.28
Pinus jeffreyi Pinus jeffreyi Jeffrey Pine 0.495 0.044 19.6-124.1 75-46.9 0.37
Pinus lambertiana Pinus lambertiana Sugar Pine 0416 0.029 13.8-151.8 8.5-54.9 0.34
Pinus monticola Pinus monticola Western- 0.462 0.055 30.1-812 77-475 036

white Pine
Pinus ponderosa Pinus ponderosa Ei:;derosa 0.537 0.073 13.3-100.3 83-527 0.38
Pc.rputus balsamifera ssp. ngulus balsamifera ssp. Black 0.391 0.041 17.2-119.5 70-36.8 031
trichocarpa trichocarpa Cottonwood
Populus tremuloides Populus tremuloides ;1;;::79 0.478 0.061 10-29.3 93-20.2 0.35
Pseudotsuga menziesii  Pseudotsuga menziesii  Douglas Fir 0.559 0.053 11.4-118 73-48.8 045
Quercus kelloggii Quercus kelloggii Black Oak 0.716 0.072 14.9-52.5 64-28.9 0.51
Tsuga mertensiana Tsuga mertensiana :1‘;:":?? 0.586 0111 12.8-71.6 3.8-30.5 0.42

Table 4.Wood specific gravity means, standard deviation, range and variance, and
diameterand height range across tree species. Means of WSG can be compared to Miles
and Smith (2009) wood specific gravity values (green volume and oven dry mass) for
trees of North America.
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Figure 3. Mean and range of WSG values for each tree species sawjtledneans

(blue diamond symbol) with a ¢6jittero6 effe

Boxplot with jitter conducted in the figgpl
We tested the relationship 023wood specific gravity values with tree species

tree size, and climate with linear mixed effects models. Model averaging of our full linear

mixed effect model returned four top models with a deltacAI@ (Table 5). Not

wanting to rely purely on the AKXcore, we also looked at estimated regression

coefficients (b) and ?values, whiehrrejuithe axplairech d c on d

variance of fixed effects (and random effects) in the model and can be used to determine
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the fit of a model (Harrison et al., 2018). Wood specific gravity was besdiegpl by

species in the average LMM with significant p values <0.001 for all species except for
Pinus lambertianandCalocedrus decurren@able 5). The high marginal and

conditional R values, ranging from 0.66 @65, for all the LMMs (Table)andicaes a

high percentage of variance in the response variable (WSG) explained collectively by the
predictor variables. However, hight Ralues are not necessarily a true indicator of
goodness of fit, so we evaluated these data, which had approximately normal

d stributions and were modeled using the de
each model were approximately normal and we proceeded in usirajues to explain

the variation each model explains. §he ran
was between 2.16E2 and 2.4€.2 which is very small but we still includé&dn our

models as a random effect. The effect sizes of the linear mixed effects models indicated
that tree species accounted for the majorittheariation in WSG, along witheight;

however, water balance variables (DEF and AET) did not have an effect on our response
variable were not significant (Figure 4). Partial effect plots for our LMMs suggest that
while WSG was best explained by species, climate effects had a negéfjdxtt across

the range of plots and species sampled (Figure 5). Tree height significantly accounted for
variation in wood specific gravity in the averaged LMM model with an estimated

rege s si on c o eBd04 and agvalue < 0.05)(Taldef5), suggesting that overall
wood specific gravity decreases with tree size. Our results highlight the strong influence
of tree species, and to a lesser extent, tree size, on WSG variationjmwitte dtressors

not playing a significant role in the linear mixed effect models (Table 3). When looking
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WSG response to

consistent pattern relating tree size, DEF, or AET with WS@tran across tree species.

Model

Maodel 1

Model 2

Model 3

Model 4

Averaged (conditional) Model

Table 5.E s t

evapotranspiration(AET), spesie a n d

mat ed

Predictors B P
Intercept  0.39 <0.0001
Species 1.6

Height -0.01  0.01275
DEF -0.007 0.11
Intercept <0.0001 -
Species 1.8

Height -0.01  0.011
AET 0.008 0.4
Intercept  0.39 <0.0001
Species 1.76

Height -0.011 0.008
DEF -0.006 017
AET 0.007 021
Intercept  0.39 <0.0001
Species 1.7

Height -0.01  0.02
Intercept  0.39 <0.0001
Species 1.74

Height -8e-04 0.017
DEF -4e-04 015
AET 3e-04 018

AlCc Marginal R2 Conditional R2

-706.6 0.66 0.66
706.3 0.66 0.66
-706.1 0.66 0.66
-706.1 0.65 0.65

0.66 0.66

regression coef-vauecAlnt s from
Marginal R and Conditional B predicting wood specific gravity values. Variables
included in the full model were climatic water deficit (DEF), actual

height. We used Akai

corrected for small sample sizes (Al@hich prefers simpler models with fewer
parameters if the change in AIGA I)C < 2.
with the lowest AIC value is the befit model (Brunham and Anderson, 2002). Bolded
p-values are significant (P < 0.05), whilevalues of norsignificant predictors retained

L a valyes indicgiéhat e model

ked
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in the models are not bolded. The random effect variance for all models was between

2.16e12 and 2.442.

Effect sizes of LMM

Species [Black Oak]- 033
Species [Douglas Fir] - 0
Species [Hemlock] - 0.1g >
Species [Incense Cedar] - 0.90
Species [Jeffrey Pine] - 018
Species [Juniper] - 0Qa*
Species [Lodgepole Pine] - 0.1g*
Species [Ponderosa Pine] - 0.15 %=
Species [Quaking Aspen]- 0.0g =
Species [Red Fir] - 0.1g*=*
Species [Sugar Pine]- g3
Species [Tan Oak]- s
Species [Western-white Pine] - 0.0g ™
Species [White Fir] - 0gs*"
Height - -0.go~
def- -090
aet- 0Q0
-0|.5 [IJ L’J.IE
Estimates

Figure 4. Effect sizs for the average linear mixeffects model with species responsible
for the majority of the variation in WSG. The blue illustrates a positive effect size, with

WSG increasing with the predictor variable, and red shows a negative eftgatish
WSG decreasing with the predictor variable. DEf and AET are not significant while tree
species and, to a lesser extent, tree size explained most of the variability in WSG.
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Figure 6. Tree size and drought stressors linked to variation of wood specific gravity
across tree spegies Byheight,b) climatic water deficit, and) actual annual
evapotranspiration.
4. Discussion

The aim of our study was to examwvbat factors influence the variability in
WSG across northern Sierra Nevada trees, with the ultimate goal of how this
understanding can potentially reduce uncertainties in carbon estimates of trees. We found
that species was the primary factor driving ahility in WSG, confirming that species
are responsible for a high degree of variability in WSG (FimbelSjaastad, 1994,

Jordan et al2008, Phillips et al. 2019). However, within species, we did find that the

height of the tree contributed to the oVeYdSG estimates, with taller trees showing
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lower wood specific gravity than shorter trees. Finally, across species, we also found a
small impact of topoclimate, with wood density decreasing with increasing climatic water
deficit (CWD) and with decreasiragtual evapotranspiration (AET). Since wood specific
gravity has been known to vary with tree size, species, and climate, and biomass
estimates rely on wood specific gravity, the variance of wood specific gravity across the
northern Sierra Nevada will havmportant implications on forest ecology, management,
and carbon estimates for each species.
4.1 Species influence

Our results demonstrate the pervasiveness of spégiesn variation in wood
specific gravity. Variation in wood specific gravity amongeies can be explained by
life-history traits in addition to genetic variation among tree species (Midledau,
2004). Our dataset encompasses tree species with low WSG, sudbadsamiferassp
trichocarpaandC. decurrensind species with high WSGuch a€). kelloggiiandN.
densiflorus Oak species, such s KelloggiiandN. densiflorusare hardwood trees that
exist in lower elevation forests in the northern Sierra Nevada which typically are under
drought conditions and have a higher wood dgrgimpared to the higher elevation tree
species that receive more precipitation. Riparian tree species, such as black cottonwood
(P. balsamifera ssp. trichocarpand quaking aspei®(tremuloidestend to have a
lower wood specific gravity due to the highailability of water, while incense ced&.(
decurren3 is a slowgrowing species that is typically tolerant to drought, but has a lower
wood specific gravity mean compared to other droughistant conifers in our dataset.
The droughiresistant conifis in our datasef( jeffreyii P. ponderosa, J. occidentalis,

and C. decurrendisplay higher wood specific values compared to published mean
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wood specific gravities for North American trees (Miles and Smith, 2009), which could
reflect a strategy for dughtresistant conifers increasing wood specific gravity by
increasing latewood tracheid widths as a response to drought (Bjorklund et al. 2017).
Softwood conifer specieéd\biessp. andPinussp.) make up the middle range of wood
specific gravity valuesral have a lower WSG value than the hardwoods. It is important
to acknowledge that when we describe species as the primary factor of predicting
variability of WSG, we are also describing climate, as climate, and in particularly, aridity,
predi ct gstrisupoasc(Steplsensond 1998). Incregsiur level of understanding
of speciedevel WSG variability will more accurately determine stdenel biomass, and
thus carbon estimates.
4.2 Size influence

Although species explains most of the variance dddltata, tree size also plays a
significant role, with taller trees having a lower specific gravity compared to shorter trees
across tree species, which provides support that functional traits, such as wood specific
gravity, can be associated with diffetdife-history strategies. Our results highlight
conventional thinking, with taller trees reflecting the fgiwing, earlysuccessional
life-history traits that have lower specific gravity woods, and shorter trees reflecting the
slow~growing, latesuccesional life-history trait with higher wood specific gravity and
lower backgroud mortality rates (Chave et &009). Thus, strength and construction
cost linearly increase with wood specific gravity, with pioneers having lower wood
specific gravity (vanGeder, Poorter & Sterck006, Larjavaara & Mullet.anday 2010).
However, there ara lot of interspecific variability, as some tree species, such.as

mertensianandP. monticolashow a sharp decrease of wood specific gravity with height
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that follows wth conventional thinking, while other tree species, sudp. gsffreyi P.
ponderosaandC. decurrenswhich are droughtolerant conifers, demonstrate a slight
increase of wood specific gravity with tall trees. This can be explained bytneger
variability, as life-history traits, soil fertility, genetic heritability, and stand characteristics
can also influence WSG variability, not just tree size.
4.3 Climatic influence

Northern Sierra Nevadads mixed ceenifer
will depend on tree speciesd ability to co
with denser wood are more able to retain water under drought conditions and have lower
mortality rates during drought (Nardini et al. 2013, Greenwood et al. 2Cb@jrary to
our expectations, climate does not explain regional variation in wood specific gravity,
and we did not see the effect of drought stress on WSG. Although wood specific gravity
slightly increased with climatic water deficit (DEF) and slighticeased with increased
actual evapotranspiration (AET), climate was not a factor for WSG variation when
looking at the effect on all species. The lack of significance of climate on WSG
variability may indicate that climate may not play a role in influegeiood specific
gravity across the northern Sierra Nevada, especially for tree species that are already
existing under drought conditions for many years. Other studies that found no association
between climate and wood specific gravity distribution inelliér Steege and Hammond
(2001), wheh saw a lack of significance ireelevel wood specific gravity and rainfall
in Guyana, while Williamson (1984) found a lack of significance in the wood densities of
wetter versusiiker sites in Costa Rica. The lacksifong influence of climate on our data

may be explained from other numerous other factors, such as genetic heritability, growth
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rate, soil fertility, and cmpetition (MullerLandau et al. 2004, Hacke et al. 2015,
Kunstler et al2016). In addition, vartgon in disturbances, such as staeglacing fires,
may be more important in future determinations of wood specific gravity variation.
Further studies elucidating the relationships between species, tree siaestdifg traits,
climate, and disturbanaeay reveal in more detail the patterns of wood specific gravity
over a region. In addition, future research can pull apart moisture limitations for each
season, such as seasonal precipitation, whicheasdociated with variation wood
specific gravityfor some caiferous trees (Carrillo et &016).
4.4 Conclusions

These results show that wood specific gravity is correlated with species and tree
height but does not vary significantly across the topoclimatic gradient of the northern
Sierra Nevada. Acamting for variation of wood specific gravity means across a large
region can improve biomass estimates. Our results for this study provide insights into
wood specific gravity variation among tree species in the northern Sierra Nevada, which
dictates carbo storage estimates and carbon sequestration rates for trees. Managing
forests for carbon storage and sequestration is a priority with climate change promoting
an increased fire hazard, overcrowding, and drought stress to forests, and understanding
the varability of wood specific gravity of tree species in the northern Sierra Nevada
forests will help managers predict volume, biomass, and carbon inventories for the

region.
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Chapter 2. Deriving novel allometric equations for northern Sierra Nevada trees
using terrestrial laser scanning
1. Introduction

Globally, the terrestrial biosphere, and in particular, forests, are estitnated
provide a net sink of approximately 20% of carbon dioxide emitted by aoteo
sources (Le Quere et al. 2017, Pan e2@l1). Preserving forests following disturbances
is thought to be important for anthropogenic €Missions uptake (Pugh et 2019).
Creating carbon maps of forests at scales ranging from individugltvdesested
stands, to forests across the world rely on biomass equations created using either remote
sensing data or field data. Specificalyn Cal i f or ni aabdwildfrer est s,
threaten forests and the wi#ahdurban interface and emphasizes the need for accurate
carbon maps in this period dimate change.ong-term carbon storage and forest health
predictors are complicated to identify without accurate dateecHiatree biomass (Pugh
et al.2018). Managing forests to increase carbon storage can be a strategy to mitigate
climate change (Zheng et al. 2013) and depends on the availability of data and tools to
monitor the change in forest biomass aadbon stocksver time (Galiket al.2009).
Carbon maps for forests are typically derived from either 1) remotely sensed data or 2)
the Forest Inventory Analysis (FIA) dataset which estimates biomass across the
continental US by usingiomassequations to convert tregriables into estimates of
biomass, and thusf forest carbon (Chave et @004). These data create national maps of
carbon stocks; however, national estimates of carbon are limited by thermafmbe
uncertainties produced frothe variability ofbiomassequations anthe heterogeneity

presenin a forest stand (Goetz et 2D09).
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These biomass equations, also known as allometric equations, are useful for
estimating carbon sequestration of woody vegetation via its relationship betwedo-easy
measure tre metrics such as species, diametdsresst-height (DBH), and/or height.

Allometry follows a basic principle in which proportions between tree height and

diameter and between biomass and diameter follow rules that apply to all trees; with the
increase ofree size, so increases tree variables, such as biomass, height, or diameter
(King, 1996, Archibald & Bond, 2003, Bohim& OO0 Br i en, 2 ®008), Di et z ¢
This powerlaw relationship is applied to predict a tree component (biomass) from

another treeomponent (diameter and height) and is based on the mechanical and
hydraulic constraits of plant growth (West et &@l999). Allometric equations are

traditionally calibrated using destructive sampling to measure biomass, which is
extremely costly, timéntensive, removes trees from the forest, and often does not take
into account the full range of tree size, spedmsoclimaticvariability, or local stand
conditions(Picard et al. 2012, Andersdreixeira et al2015). There is aoticeabldack

of destretive sampling across local regions, which leadsnderrepresenting range of

tree species and tree size, and also leads to allometric equations which tend to be applied
outside of the populations which were sampled (Jen&t al2003). Uncertaintieare

reduced with large sample sizes, as small sample size allometric models systematically
overestimate carbons stocksNorth America (Duncanson et 2015).

Terrestrial laser scanning (TLS) can be a solution for reducing uncertainties in
allometric nodels, especially through direct estimates of AGB, as it is a way to increase
sample sizes and reduce biases (Disney et al., 2019). TLS data can be used to characterize

forest structure at a tree level, and tree parameters can be directly measured Trio& the
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point cloud without sampling bia$LS functions as an effective natestructive

alternative to destructive sampling, TLS canused to sample large and h&rdind

trees as easily as tBenall and common tree species large trees can make upotat of

50% of the total live tree AGB, and inclusion of large trees in allometric models are vital

to reducing acertainty (Ahmed et al., 20L3However, the mraccurate TLS point

clouds introduce their own set of limitations and traffs, including lowpoint density in

the upper canopies of forestnd occlusion in dense, tall forests (Burt et al., 2018).
TLS-derived AGB is estimated by calculating tree volume using quantitative

structure models (QSMs; Raumonen et al., 2013), which reconstruct treesrngt

fitting cylinders to the trunk and branches. The QSM method estimates individual tree

AGB when multiplied by wood specific gravity; however, wood specific gravity

introduces more uncertainties in allometric models (Chave et al., 2006, Swenson and

Enquist, 2007, Mitchard et al., 2013). QSMs have been applied for AGB estimation in

boreal and temperate forests (Roumenen et al., 2015) anchtrfipests (Disney et al.,

2018 de Tanago et al2017). Calders et al. (201f9und that TLS derived AGB

esimates in Australia had a high agreement with destructive sampling reference AGB

(CV RMSE= 16.1%) compared to allometric model derived AGB (CV RMSE = 46.2%

57%). Large tropical tree TL-QSM derived AGB found a slightly higher agreement (CV

RMSE = 28.37%)outperforming the accuracy of pantropical allometric models,

providing evidence supporting a trend that Td&ived volumee account for tree

structure more effectively than allometric models and results in AGB estimates that are

unbiased by tree sizeddanagat al.2017). Burt et al. (2013) found that volume

derived from TLS data can be recreated to a 10.8% underestimate, and Wilkes et al.
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(2018) found QSM recreated AGB to 1.4% overestimate for a local urban allometric
eqguation in a London borough. $lestimates of tree height have been found to be
accurate compared to destructivempled trees (Calders et al. 2015, Stovall et al.

2018), and since standard allometric models underrepresent large trees, TLS provides a
unigue opportunity to unbiasedlgraple large trees.

Here, we developed novel Tikderived allometric models across 16 tree species
in the northern Sierra Nevada. Californiao
experienced an increase in drought and wildfire which threatens forestsndnd la
managers are encouragedianage forests to maintain forest health and ecosystem
productivity (California Global Warmingolutions Act of 2006; Assembly Bill 32 (AB
32); Nufiez, Chapter 488, Statutes of 2006order to create novel equations, we &m
improve upon the destructive harvesting approach and we will address the following
limitations of that approach; i) small sample sizes ii) lack of full range of tree size
sampled and iii) lack of diverse rangktree species and iv) regi@pecific eqations
that capture topoclimatic variability. We compared Tde&Sived allometric models
against existing national equations and evaluated the variability oti€Li%ed
allometric equations across a topoclimatic region using two water balance variables;
climatic water deficit and annual actual evapotranspiration. We also assessed the use of
QSMs for measuring tree structure metrics such as DBH and height. The effectiveness of
TLS in estimating speciespecific AGB to create novel allometric models may have
large implications for future AGB and carbon stock estimations for the northern Sierra

Nevada in a time of drastic change in forest bions&ssks.
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2. Methods

2.1 Area of Interest (AOI) and plot selection

Our goal was to generate novel allometric equationtree species in the
Northern Sierra Nevada Mountains in Catifia.As such, our primary areas of interest
(AOQIs) included the Lake Tahoe Basin Management Unit (LTBMU) and Plumas
National Forest (PNF). These sites cover a large topoclimatic gragiembing in
elevation from 215 to over 2818 meters above sea level and cover approximately
5,200knt. The northern Sierra Nevada Mountains experience a Mediterranean climate
pattern of long, dry summers and cool, wet winters. Our dataset encompasses a large
topoclimatic gradient and ranges in temperature #®m to 28 , 1 n actu.
evapotranspiration (AET) from 348 to 476 (mm), and annual climatic water deficit (DEF)
from 70 to 188 (mm) (Morrison, 2018).

Plot locations in the LTBMU and PNF were selectalaviwoestage sampling
design in which a grid of 10 kihwas established covering the LTBMU and PNF, and 1
plot within each grid cell was randomly sampled, constrained to locations with > 10%
tree cover taken from a LANDSAT analysis, and avoiding locatongrivate land, with
heavy disturbances, such as recent fire history and logging based on CALVEG: A
classification of California Vegetation mapping methodology (USDA Forest Service,

1981). In the endye selected 08 plots bcated in California (Figure 1)
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O TLS Plots
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[ Lake Tahoe Basin Management Unit | G

Figure 1. TLS plots (N=108) across the Plumas National Forest and Lake Tahoe Basin
Management Unit (LTBMU). Three additional plots were placed outside of the Plumas
NF and LTBMU boundaries to sample species that are not typically found in the Plumas
NF and LTBMU, but occur outside of these areas in the northern Sierra Nevada.
2.2 Plot setup, initial field mensuration, and terrestrial laser scanning

Our plots were designed to represent a 3@0Om area, with a 5m buffer on all
sides. TLS data were adged using a Riegl VZO0O0i Terrestrial Laser Scanner, with
specifications shown in Table This instrument records multipketurn LiDAR data and
collects data about the position and orientation of points in-thireensional points. The
TLS was mountedroa tripod, leveled at each scanning position, and the height of the
tripod was adjusted at each to be higher than any surrounding shrubs or undergrowth to

avoid occlusion. Each plot was scanned-aB8%eparate scanning positions (depending

on the tree desity of the plot) with terrestrial LIDAR during 3 field seasons from 2017 to
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2019. Each scan was taken at an upright (0°) position and at a 30° tilt scan (to capture the
tree canopies) at each scanning location. Additional scans were added to each plot
depending on lineof-site from the TLS to each of the four reflectors located at four
corners interior to the plot to establish a stable point across space and time and-act as tie
points to ceregister scan positions. Point clouds from each scan positi@oeer
registered together using RiISCAN Pro software (Riegl Laser Measurement Systems
GmbH, 2020). After coregistration, each TLS scan was registered to an airborne laser
scanning (ALS) base map using LAStools (RapidLasso GmbH, 2019) and
CloudCompare (GiraehuMontaut, 2020), with an average point density of 7.86 points
per cnf and 125,830,459 average number of points per plot and produced a detailed point
cloud for each plot (Figure 2, Hartsook, 2021).

During the initial setup of plots in 2017, eacbtphas stem mapped in the field.
An experienced forester identified the most dominant tree species in each plot, and any
remaining tree species with a diameter O
mapping. The distance and azimuth to each treemili@ plot were recorded from the
plot center, which resulted in a complete stem map of tree species in each TLS plot

(Hartsook, 2021).
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Height (m)

a) b)

50

Figure 2. A TLS plot colored with a height ramp in metae)sas seen from a side vidwy

from a topdown view. Plotsvere clipped at 30 by 30 meters with a 5m buffer, and any
noise associated with clipping the point cloud was taken care of by the 5 m buffer. As
seen im), the TLS point density decreases with height, as the upper canopies of tall trees
are harder to reh with the TLS.

TLS RIEGL VZ400i Specifications

Wavelength 1550 nm

Minimum range  1.5m

Maximum range 350 m

Scan range 0-360 ° in azimuth
30-130 ° in zenith

Beam divergence 0.35 mrad

Scans per position 1 scan at 30 ® tilt

1 scan at 0 ° tilt

Table 1 Riegl VZ-400i scanner settings for TLS multiple return data acquisition.
2.3 Ancillary data
Wood specific gravity sampling was outlined in Chapter 1. A total of 329 trees

across 89 plots were cored for wesykcific gravity 8DBH with a 5.15mm wide
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increment borer. We removed pith and bark for each core prior to oven.dfgingach
tree core, we measured the basic wood specific gravity V&Ghe ratio of ovedried
mass to green volume (W$&oven dry mass/ green volumthe |}  \W\lltarmsor) and
Wiemann, 201)) We obtained individual estimates of wespkecific gravity and
calculated a species mean to multiply against-@ieBved volume to get AGB (equation
1). Each core sample was owered for 48 to 72 houns awell-ventilated oven at 101
105°C until themass remained constant (Williamson and Wiemann, 2010). Green
volume was measured using the waispldcement method (llic et &000), and the
green volume of the sample is equal to the measured mass of theedispéder. A
beaker was filled with deionized water and each sample was foncksiwateusing a
small pin, with careful attention paid to each sample not touching the walls of the beaker.
We obtained individual estimates of wesplecific gravity and caldated a species mean
to multiply againsiLS-derived volume to get AGB.
2.4 Tree selection
Our goal was to select trees for analysis that covered the diversity of species, size
classes, and climatic conditions present across our study area. To adtohnmpliwe
first created a stem map using virtual mensuration techniques, linking these stems against
field-identified species. Each TLS point cloud was normalizedebeight alove ground
using LAStools (RapidLasso GmbH, 2019), filtering all points inithcm of the
standard DBH height 1.37m (1-3242m). These DBH "slices" were converted to rasters
at 1cm resolution (Figure 3). Each raster represented a TLS plot and trained researchers
mapped diameter and tree species to each circle, which allowstériopositions and

DBH to be determined. Finally, tbe virtual stems were linked against all plot level






























































































































