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Abstract

Understanding the topological characteristics of the Internet is important for

researchers and practitioners as the Internet grows with no central authority. This

understanding is a necessity to better design, implement, protect and operate the

underlying network technologies, protocols, and services. The need for accurate In-

ternet topology map has increased recently with new services such as overlay net-

works and IP TV. Router-level Internet topology measurement studies have three

main steps: topology collection, topology construction, and topology analysis. In

topology construction, there are several main challenges: unresponsive router reso-

lution, identification of underlying subnets and detection of IP aliases. These tasks

become especially challenging when large-scale topologies of millions of nodes are

studied. In this thesis, we present the topology construction processes of the Cheleby

system, an Internet topology mapping system that provides insight into the Internet

topology by taking daily snapshots of the underlying networks. The system utilizes
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efficient algorithms to process large-scale datasets collected from distributed vantage

points and provides accurate topology graphs at link layer. Incorporating enhanced

resolution algorithms, Cheleby provides comprehensive Internet backbone maps.
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Chapter 1

Introduction

The Internet, the largest man made complex network, is a web of interconnected back-

bone networks over which thousands of small and medium size Autonomous Systems

(ASes) interconnect individuals, businesses, universities, and agencies. The Internet

is a spontaneously growing complex system whose large-scale structure is affected by

many interacting units aimed at optimizing local communication efficiency without

a central authority. While the building blocks of the Internet, i.e., its protocols and

individual routing systems, have been subject to intensive studies, the immense global

entity has not been precisely characterized.

The Internet’s global properties cannot be inferred from local ones as it is

composed of networks engineered with large technical diversity and range from small

local campuses to large transcontinental backbone providers [24]. Additionally, the

Internet evolves with the interplay between cooperation to make the network work

efficiently, and competition between providers to earn money. Routers and links are

added by competing entities according to local economic and technical constraints

where topology information is kept confidential due to various privacy and security
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concerns. The combination of all of these factors results in a general lack of under-

standing of the topological characteristics of the Internet.

The need for Internet topology map has increased obviously over last years. It

allows users to evaluate and forecast the growth trends and the performance problems.

For example, understanding the topology of the Internet helps adapting applications

to the underlying network in better manner. Furthermore, router-level Internet maps

are useful to analyze the topological characteristics of the Internet and to design

topology generators that can produce Internet-like synthetic network topologies to

be used in simulation studies [39]. However, the confidentiality of network topology

introduces challenges for the research community and requires them to use other

means to collect this information.

The research community has been conducting numerous Internet measurement

studies to answer various questions on the functional and topological characteristics

of the Internet. In order to facilitate topology measurement studies, several research

groups have developed mapping systems to collect the required information. These

include the PlanetLab measurement infrastructure [7], the Archipelago measurement

infrastructure of CAIDA [49], the iPlane infrastructure [50], the DIMES project [63],

the Scriptroute project [70], and several others [54, 67, 74, 75]. In general, Internet

topology measurement studies consist of three phases: (1) topology sampling, (2)

topology construction, and (3) topology analysis. Inaccuracies in the first two pro-

cesses may significantly affect the accuracy of the observations or results obtained

in the measurement study [32, 37, 73]. However, current topology mapping systems

only provide raw data without completing topology construction tasks. Most of the

researchers that use provided raw data are not aware of these challenges causing

inaccuracies in their studies.
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Figure 1.1: Cheleby System Overview

Many Internet studies require availability of representative topology maps.

Depending on the nature of measurement study, researchers may use different types

of topology maps including AS level [43, 51], Point-of-Presence (POP) level [26, 78],

router level [67], or IP address level maps [52]. A POP level topology map is often

the most detailed information that ASes make publicly available, if at all, about their

network [24].

In this thesis, we present the topology constructor part of Cheleby, an Internet

topology mapping system that provides insight into the Internet backbone topology

by taking daily snapshots of the underlying networks. The system utilizes efficient al-

gorithms to process large scale data-sets collected from distributed vantage points and

provides accurate topology graphs at link layer. Incorporating enhanced resolution

algorithms, Cheleby provides comprehensive topology maps.

Cheleby topology mapping system, shown in Figure 1.1, runs on a server which

actively manages PlanetLab nodes as its monitors to collect topology information from

geographically diverse vantage points. The server instructs monitors to collect partial

path traces and perform other probing activities. Cheleby then resolves subnets,

IP aliases and unresponsive routers within the collected raw data to construct the

network graph corresponding to the sampled network. Unlike previous approaches,

Cheleby provides both the raw and the constructed Internet topology data.
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1.1 Preliminaries

In Internet topology measurement studies, there are generally three main steps:

(1) Topology collection,

(2) Topology construction,

(3) Topology analysis.

In general, most of the router level Internet measurement studies are active

measurement based, and they utilize traceroute or several other Internet debugging

tools [12, 55, 63, 71] to collect path traces from a set of vantage points to a set of

destination nodes. As mentioned above, there are several systems providing the raw

router-level Internet topology data, but there is no system providing the up-to-date

constructed topologies. This is simply because of the fact that the literature on

topology construction is fairly limited compared to the studies in topology collection

and topology analysis. Moreover, topology construction is not a straightforward

process requiring considerable computations. However, inaccuracies in this process

may significantly affect the accuracy of the observations or results obtained in the

measurement study [11, 15, 32, 36, 73].

This thesis mainly addresses the topology construction part. We first introduce

the main problems that must be handled during topology construction step.

Topology construction involves several tasks including: (1) filtering erroneous

traces (2) inferring IP addresses that are connected over the same subnet, (3) iden-

tifying IP addresses belonging to the same router, and (4) resolving unresponsive

routers that are represented by ’*’s in traceroute outputs. And, the inclusion of these
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b) observed topology (inferred topology) a) genuine topology

C D

A B
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A B

Figure 1.2: Effect of Subnet Resolution

tasks will considerably improve the accuracy and the completeness of the constructed

topology map.

First of all, genuine subnet resolution helps in identifying connectivity between

IP addresses in the data set. The main goal in subnet detection is to identify multiple

links that appear to be separate and combine them to represent their corresponding

single hop (e.g., point-to-point or multi-access) connection medium. Normally, routers

are connected to each other over subnetworks. Subnet inference helps to identify the

underlying subnets by analyzing the relation between IP addresses in the data set.

The successfully inferred subnet information helps: (1) to improve the quality of the

resulting map by annotating it with additional information, (2) to increase the scope

of the map by adding new links into the resulting map, and (3) to improve the IP

alias resolution process [38].

In subnet resolution task, the IP addresses in a data set are analyzed to infer

subnet relations among them. As an example, consider four routers A, B, C, and D,

in Figure 1.2-a, that are connected to each other via a multi-access link. Assume that

a collected set of path traces include the A-to-B link and the B-to-C link and no path

trace at hand includes the A-to-C link or any link between D and other routers. In

this case, a router level map that does not consider the subnet relation among these

IP addresses will yield in a subgraph as shown in Figure 1.2-b, which is considerably
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Figure 1.3: Importance of Alias Resolution

different from the underlying topology. On the other hand, a careful study of the IP

addresses may detect the subnet relation between the routers and therefore improve

the resulting map.

The second issue to consider during router-level topology construction is IP

aliases. As routers have multiple interfaces each one has a different IP address. In a

given set of path traces, a router may appear on multiple path traces with different

IP addresses. Therefore, there is a need to identify and group IP addresses belonging

to the same router. Without IP alias resolution the resulting topology map may be

significantly different from the real topology [36, 37]. For instance, each router has
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multiple interfaces with unique IP addresses in Figure 1.3-a. Then, collecting traces

between all pairs of e, d, and f end systems, we would obtain a sampled topology

as in Figure 1.3-b. Hence, we need to identify IP aliases and cluster them as shown

with red circles.

Finally, unresponsive routers are routers that are unresponsive to traceroute

probes and are represented by a ‘*’ in a traceroute output. Since a router may appear

in multiple traceroute outputs, it is needed to identify ‘*’s (i.e., anonymous nodes)

that belong to the same router. Based on the number of unresponsive routers in the

topology and the way of topology collection, there would be huge number of ’*’ in

the collected set of path traces. For example, daily Internet topologies collected by

Cheleby have more than 7M unresponsive nodes along with 1.2M known interfaces.

Moreover, a sample network is shown in Figure 1.4-(a). Assume that in this topology

H, K, and N are configured to act as unresponsive routers. When we run traceroute

queries between all vantage points, represented as e, d and f in this figure, collected

path traces will be as shown below. Using these traces, the resulting topology pre-

sented in Figure 1.4-(b).

d - * - L - S - e

d - * - A - W - * - f

e - S - L - * - d

e - S - U - * - C - f

f - * - C - * - * - d

f - * - C - * - U - S - e

Therefore, it can be concluded that even small number of unresponsive routers

may significantly distort the constructed network topology and prevent researchers
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Figure 1.4: Importance of Unresponsive Router Resolution

from obtaining the actual Internet topology from the trace paths collected. This

example also shows the significance of the unresponsive router resolution task to

obtain the actual topology map.

1.2 Organization

In Chapter 2, we present the related work in Internet topology construction area. In

Chapter 3, we present a structural graph indexing approach that can be used, not only

in Internet topology construction process, but also in other complex network analysis

projects. In Chapter 4, we give an overview of the Cheleby Internet Mapping system

and present issues in topology construction. In Chapter 5, we present the experiments
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and the results. Finally, in Chapter 6, we conclude the thesis and provide a brief

overview of future work to enhance the Cheleby Internet topology mapping system.



10

Chapter 2

Literature Survey

In this chapter, we review the related works in the Internet topology mapping area.

Since the topology collection and analysis parts are beyond the scope of this thesis,

we mainly focus on the Internet topology construction studies.

2.1 Subnet Resolution

In [38] Gunes et al. identified the subnet resolution task for topology construction

studies and analyze its utility. The proposed subnet detection task presents similari-

ties with that of the IP alias resolution task (the previous task of map construction).

In IP alias resolution, the goal is to identify nodes that appear to be separate in the

collected path traces and combine them into one single node (i.e., to detect IP ad-

dresses, in the data set, that belong to the same router). Similarly, the goal in subnet

detection is to identify multiple links that appear to be separate and combine them

to represent their corresponding single hop connection medium (e.g., point-to-point

or multi-access links). As a result, the inclusion of this task will improve the accu-
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racy and the completeness of the constructed topology map. They also developed an

approach to infer subnets in a given set of path traces. Their dynamic subnet infer-

ence approach analyzes IP addresses and performs additional probing, if necessary,

to group IP addresses into their corresponding genuine subnets. Moreover, inferred

subnets help in identifying significant number of single-hop connectivity. Successful

identification of the subnet helps in combining IP addresses over a multi-access link

in the constructed topology map.

2.2 IP Alias Resolution

Several studies pointed out the impact of incomplete IP alias resolution in certain

measurement studies [15, 73]. In [37], Gunes et. al. perform an experimental study

on the impact of IP alias resolution on various topological characteristics. Vary-

ing the resolution success rate, we analyzed over 20 different graph characteristics

including topology size, node degree, degree distribution, joint degree distribution,

characteristic path length, betweenness, and clustering. The results indicate that the

IP alias resolution process has a significant impact on almost all topological charac-

teristics that we consider. Therefore, Internet measurement studies should employ all

the means possible to increase the accuracy/completeness of the IP alias resolution

process.

Several mechanisms have been proposed to resolve IP aliases [18,31,57,65,68]

and few tools have been developed including ally [1] and iffinder [4]. These tools use

an active probing approach to resolve IP aliases. They are easy-to-use and provide a

convenient way to verify if a given pair of IP addresses is alias or not. As Gunes et

al stated in [36, 37], these tools depend on the participation of the routers in terms
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of responding to the queries directed to themselves. This dependence introduces

limitations to the success of IP alias resolution task as some network administrators

configure their routers to ignore active probes directed to them. As an example,

in their experiments, they observed that 40 percent of 7073 IP addresses that they

probed with ally did not return a response.

The initial work on IP alias resolution utilizes source IP addresses of ICMP

error replies [57]. It assumes that when a router generates an ICMP error message

to be sent to a remote system S, the router uses the IP address of the interface that

is on the shortest path to S as the source IP address in the ICMP error message.

However, this implementation is not common as most routes copy the IP address

from the original packet. Mercator [31] and iffinder [4] probe a given IP address and

check whether the returned ICMP error message arrives from another IP address to

identify aliases.

The second approach relies on the IP identification field value in the IP protocol

header of the returned ICMP error messages [67]. When an IP packet is generated, the

kernel puts a 16-bit value into the IP identification field in the IP header. Typically

the value is implemented as a monotonically increasing counter. Since IP identifi-

cation number is monotonically incremented, successive packets originating from the

same router have consecutive values. After sending probe messages to different IP

addresses, one can analyze whether the returned packets have consecutive or close by

IP identification values. Given two IP addresses, ally sends successive probe packets

to each of the two address, and a third packet to the address that responds first [66].

If the responses have IP identification values in sequence with a small difference in

between, they are likely to be aliases and are classified as alias. It is is also possible

that two responses from non-alias IP addresses will have close identification values.
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Thus, repeating the test may reduce false positives. Since this method requires O(n2)

probes to test all possible pairs, several approaches have been deployed to reduce

the number of probes [14, 28]. Moreover, as some routers do not respond to certain

probes, [29] has proposed alternative probes to increase the elicited responses from

routers.

Another approach to resolve IP aliases is to use the record route option of IP

protocol. When record route option is enabled, a packet will include up to 9 hops of

IP addresses belonging to the routers it has traversed. This can help in identifying IP

aliases as the recorded interfaces are usually the outgoing interfaces while traceroute

returns the incoming interfaces [4]. Record route based method is not very successful

since routers generally drop packages with record route option set. In addition, there

is not a guideline specifying which IP address a router should put into the header and

different vendors have varying implementations. Sidecar has presented an approach to

benefit from this option by performing the measurement using data package [65]. [64]

proposes a disjunctive logic programming approach to decide on the proper alignment

of collected path traces in order to infer IP aliases. A significant disadvantage of the

method is that the disjunctive logic programming is computationally expensive.

Additionally, DNS based method relies on the similarities in the host names of

routers and works when an AS uses a systematic naming convention in assigning DNS

names to router interfaces [72]. This method can be successful even if a router does

not respond to probes. However, the DNS based approach can be used only when a

systematic naming scheme is used by the AS and the naming template is present in

the database.

Gunes et al [34], conducted an experimental study on the impact of IP alias

resolution on various topological characteristics. The results indicated that the com-
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pleteness and the correctness of the IP alias resolution process has a considerable im-

pact on almost all topological characteristics. Moreover, they present a new IP alias

resolution algorithm called Analytic and Probe-based Alias Resolver (APAR) [35].

APAR consists of an analytical component [36, 37] and a probe-based component.

Given a set of path traces, the analytical component utilizes the common IP ad-

dress assignment scheme to infer IP aliases. In addition, APAR can optionally use

a lightweight probing component (O(n) probes) to improve its accuracy. APAR is

a more scalable approach to resolve IP aliases than the state-of-the-art probe based

approach. Then, their experiments revealed that APAR could detect a significant

number of alias pairs that ally tool fails to detect. However, being two orthogonal

approaches, APAR and ally do not compete but complement each other in maximiz-

ing the success rate of the overall IP alias resolution process [33]. Recently, CAIDA

announced they will release their tool KAPAR (modified from APAR) soon.

2.3 Unresponsive Router Resolution

Unresponsive router resolution is an inherent problem in traceroute based topology

mapping studies. Most of the early work in the area ignored this problem or used

simple heuristics to work around it [15, 16, 19]. In [19], authors avoid the problem

by stopping a trace toward a destination on encountering an unresponsive router on

the path. In [16], authors handle unresponsive routers by replacing them either (1)

with arcs (to connect the known routers at two ends) or (2) with unique identifiers

to treat them as separate nodes. Finally, in [15], authors use a sandwich approach

to merge a chain of unresponsive nodes between the same pair of known nodes with

each other. These approaches cause either loss of potentially useful connectivity
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information (as in [19]), or inaccuracies in the resulting topology maps (as in [16]),

or limited resolution in the resulting topology maps (as in [15]).

The first study analyzing the problem in depth formulates it as an optimization

problem [77]. Their goal is to build a minimum size topology by merging unresponsive

nodes under two conditions: (i) trace preservation condition, i.e., there should not be

a routing loop due to merging two unresponsive nodes, and (ii) distance preservation

condition, i.e, the unresponsive router resolution process should not reduce the length

of a shortest path between any two nodes in the resulting topology map. They

prove that the optimum topology inference under these conditions is NP-complete and

propose a heuristic to minimize the constructed topology by identifying unresponsive

nodes that, when merged, satisfy the two conditions. The main limitation of this

approach is its high complexity, i.e. O(n5) where n is the number of unresponsive

nodes, that significantly limits its practicality in real life scenarios. Additionally, the

claimed distance preservation condition is not necessarily accurate as inter domain

routes may not always be the shortest routes.

Later, an ISOMAP based dimensionality reduction approach that uses link

delays or node connectivity as attributes in the dimensionality reduction process is

proposed in [45]. The main limitation of this approach is its high complexity, i.e.,

O(n3) where n is the size of the topology. In addition, the link delay based approach

is not practical as they ignore the difficulty of estimating individual link delays from

round trip delays in path traces [27]. The authors also propose a simple neighbor

matching heuristic with a smaller time complexity, i.e., O(n2). As the authors mention

in their paper, this approach may introduce a high rate of false positives and false

negatives.

Recently, Shavitt [10] described a method of recreating an IPlevel graph, in
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which the unknown nodes are not overrepresented by unifying groups of unknowns,

that are likely to stem from the same unknown root. They introduced a novel cluster-

ing algorithm based on semi-supervised spectral embedding followed by unsupervised

clustering in the projected space. Applying their algorithm to placeholder maps yields

IP-level maps that are much more meaningful and usable. By merging groups of un-

knowns, they arrived at a good approximation of the real graph, which can then be

used to study the properties of the IP-level graph. The improved performance of the

proposed method is demonstrated on large real internet data collected by the DIMES

project [3]. However, it assumes that majority of nodes are known nodes, which

generally is not the case in sampled topologies.

Gunes et al. [39] added a new dimension to the problem by classifying the

anonymity types. They observe five different scenarios that cause routers to stay un-

responsive. In three of these scenarios we never get a response from the router, while

in two of the scenarios a router might sometimes respond or stay unresponsive. They

then formulate a number of graph structures that can be found in traceroute-based

topologies collected from the Internet. Namely, Parallel/Symmetric *-substrings,

Clique, Complete Bipartite, and Star structures are defined. Based on this formula-

tion, they introduced a graph based induction technique where they search for struc-

tures similar to the identified ones in the topology and then reduce the occurrences

of unresponsive nodes into their corresponding routers. Graph based induction is a

technique to obtain information from a graph in data mining field [53].
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Chapter 3

Structural Graph Indexing

Complex systems such as proteins, chemical compounds, and the Internet are being

modeled as complex networks to identify local and global characteristics of the system.

In many instances, these graphs are very large in size presenting challenges in their

analysis. Hence, graph indexing techniques are developed to enhance various graph

mining algorithms. In this section, we propose a new Structural Graph Indexing

(SGI) technique that does not limit the number of nodes in indexing to provide an

alternative tool for graph mining algorithms. As indexing feature, we use common

graph structures, namely, star, complete bipartite, triangle and clique, that frequently

appear in protein, chemical compound, and Internet graphs. Note that, SGI lists all

substructures matching structure formulations and other graph structures can be

identified and added to the SGI.
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3.1 Introduction

Many systems can be modeled as a complex network to understand local and global

characteristics of the system. Studying network models of systems provides a new

direction towards a better understanding biological, chemical, technological or social

systems. In many cases, the systems under investigation are very large and the corre-

sponding graphs have large number of nodes/edges requiring graph mining techniques

to derive information from the graph. Several graph mining techniques have been de-

veloped to extract useful information from graph representation and analyze various

features of complex networks [22]. In order to speed up graph queries, usually an

index of the graph is derived according to some predefined index features.

Graph indexing is often utilized by graph search algorithms that look for a

sub-graph within a graph database. For example, given a graph database G={g1, g2,

..., gn} and a subgraph s, we are interested in identifying all graphs gi that contain

the subgraph s. This query is shown to be NP-complete [30] and becomes challenging

as the size of graphs increase. For example, a typical graph of router-level Internet

consists of millions of nodes making it impractical to perform many operations on the

whole graph. In such cases, graph indexing allows operations to be more efficient.

In this chapter, we propose a new structural indexing approach to provide

an alternative tool for graph mining algorithms. For indexing, we specify a set of

common graph structures such as star, complete bipartite, triangle and clique. These

structures are ubiquitous in biological, chemical, technological, and social networks.

In order to reduce computational complexities, we index these structures within the

original graph in a consecutive manner. We first identify star structures, and then

the complete-bipartite, triangle and clique structures from the preceding ones. Our
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approach, unlike previous ones, does not limit the size of the subgraph considered in

indexing. However, it may be limited as maximum clique search is an NP-complete

problem [30].

3.2 Related Work

The need for mining large graphs in an efficient manner increases as researchers look

into new complex networks. Several studies have been carried out to make graph

mining in an efficient manner using indexing techniques [20,23,44,47,56,62,76]. Many

of the tools have constraints that limit the number of nodes/edges in index subgraphs

or are not capable of operating on very large graphs. The graph indexing studies can

be mainly categorized into two categories, namely, path-based and structure-based

approaches.

Path-based graph indexing approaches use path expressions as indexing fea-

tures such as GraphGrep [62] and Daylight [44]. GraphGrep enumerates all paths

in the graph up to the length maxL. Then, it looks for each graph gi whether it

contains all paths up to maxL for a graph query qi. A significant feature of path-

based approaches is that paths can be manipulated more easily than general graphs.

However, as Yan et al. indicated, a path is a simple structure loosing structural in-

formation of a graph, and the hence false positive ratio of path-based methods would

be very high [76]. In addition, the number of paths in a graph database increases

exponentially making path-based methods impractical for very large graphs.

Alternatively, structure-based graph indexing approaches identify subgraphs

to be indexed as in gIndex [76]. gIndex first searches for the frequent subgraphs

in the graph, then indexes these frequent structures. An issue in this case is that
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frequent subgraph discovery increases complexity and exponential number of frequent

fragments may exist under low support. Therefore, they limit the number of nodes

and index frequent structures up to 10 nodes in their study.

In this thesis, we propose an alternative structural indexing approach to search

and process queries efficiently even in very large graphs. As indexing features, we use

commonly observed graph structures: star, complete bipartite, triangle and clique.

An important feature of these structures is that each one is comprised from the pre-

vious one where clique contains complete bipartite structures and complete bipartite

contains star structures.

3.3 Structure Models

In structural indexing, we index predefined structures that are commonly observed

in complex networks. In particular, we index star, complete bipartite, triangle and

clique structures (shown in Figure 3.1) in a given graph G = (V,E). An important

difference of our approach from the previous studies is that we do not limit the size

of subgraph considered in indexing. We index all maximal graphs that match the

structure formulation. For instance, a maximal clique is a clique that cannot be

extended by adding one more vertex from the graph. However, the substructure size

in indexing may be limited when needed since maximal clique search is known to

be NP-complete [30]. In order to reduce computational complexities, we index the

structures within the original graph in a consecutive manner. That is, we first identify

star structures, and then the complete-bipartite, triangle and clique structures from

the preceding ones as detailed below.
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Figure 3.1: Structural Models

3.3.1 Star Structure (K1,n)

We first index the star structure where a node has multiple neighbors as shown

in Figure 3.1-(a),(b) and (c). All star structures within a graph G = (V,E) are

represented as s(vi, nsi) where vi ∈ V and nsi is the set of all neighbors of vi. We index

maximal star structures for each node using the algorithm presented in Figure 3.2.

The algorithm first builds a star structure s(v,∅) for each node v without any neighbors.

Then, for each edge e(a, b), it appends neighbor sets of nodes a and b to the other
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Let G = (V,E); S ← ∅;

for (each node v ∈ V )
S ← S ∪ s(v,φ)

for (each edge e(a, b) ∈ E)
s(a,ns) ← s(a,(ns∪{b}))
s(b,ns) ← s(b,(ns∪{a}))

for (each s(v,ns) ∈ S)
if |ns| < 2
S ← S − s(v,ns)

Figure 3.2: Alg. 1 - Star Structure Indexing

one. Finally, the algorithm removes star structures s(v,ns) that have less than two

neighbors.

3.3.2 Complete Bipartite Structure (Km,n)

The second structure we index is complete bipartite, shown in Figure 3.1-(d), (e) and

(f). A complete bipartite graph G = (V1 ∪ V2, E) is a bipartite graph such that V1 and

V2 are two distinct sets and for any two vertices vi ∈ V1 and vj ∈ V2, then there is an

edge between them (i.e., ∃ e∗(vi,vj) ∈ E). The complete bipartite graph with partitions

of size |V 1| = m and |V 2| = n is denoted as Km, n. Note that, star structure is a

special case of a bipartite graph (not necessarily complete) where m = 1. Moreover,

finding the complete bipartite subgraph Km, n with the maximal number of edges

m.n is an NP-complete problem [58].

We index all complete bipartite structures in the graph G using indexed star

structures as in Figure 3.3. In the algorithm, for each star structure s(a,ns) where ns

is the set of all neighbors of the node a, we identify the maximal complete bipartite

involving the node a. For this purpose, we find second hop neighbors of a by first

iterating over the ns set and then unifying them under the set Lcan that indicates
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INPUT: S from Alg.1 in Figure 3.2

Let G = (V,E); K ← ∅

for (each s(a,ns) ∈ S)
Lcan ← φ
for (each bi ∈ ns)
Lcan ← Lcan ∪ ns∗ where ∃ s(bi,ns∗) ∈ S

Lcan ← Lcan − {a}
Rcan ← ns

for (each vi ∈ Lcan)
Rnew ← Rcan ∩ ns+i where ∃ s(vi,ns+i ) ∈ S

if (|Rnew| ≥ 2)
Lnew ← {a} ∪ {vi}
for (each vj ∈ Lcan)

if (Rnew ⊂ ns#j where ∃ s(vj ,ns#j ) ∈ S)

Lnew ← Lnew ∪ {vj}
K ← K ∪ k(Lnew ,Rnew)

Figure 3.3: Alg. 2 - Complete Bipartite Structure Indexing

candidates for the left side of the complete bipartite while the set ns is the candidate

set for the right hand side. Next, we first find a K2,n and then grow it to Km,n. In

finding K2,n, we iterate over each candidate node in the set Lcan and determine the

neighbor intersection with a. If the intersection set is larger than two, then these

nodes belong to the right hand side. In the second step, we grow the K2,n by finding

all nodes in the left hand side (i.e., Lcan) that has the right hand side nodes (i.e.,

Rnew) as a neighbor.

The complete bipartite structure is ubiquitous in many complex networks.

For example, [8] examines the structure of protein-protein interaction networks and

showed that the graph of all protein-protein interactions is made up of complete

bipartite structures.
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INPUT: S from Alg.1 in Figure

Let G = (V,E); T ← φ; TS ← φ

for (each s(a,ns) ∈ S)
for (each nsi ∈ ns)
TS ← ns ∩ ns∗ where ∃ s(nsi,ns∗)
for (each tsi ∈ TS)
T ← T ∪ t(a, nsi, tsi)

Figure 3.4: Alg. 3 - Triangle Structure Indexing

3.3.3 Triangle Structure (K3)

Third, we index the triangle structure which is a clique of three nodes as shown in

Figure 3.1-(f). We index all triangles in the graph by iterating over the star structures

as in Figure 3.4. In the algorithm, for each star structure s(a,ns), and s(nsi,ns∗) where

(nsi ∈ ns), we take the intersection set TS of the sets (ns) and (ns∗). Thus, for each

(tsi ∈ TS), (a, nsi, tsi) constitutes a triangle.

Counting the number of triangles in a graph has become more important in

recent years as complex network analysis gained importance. Several important com-

plex networks metrics, such as the clustering coefficient and the transitivity ratio,

involve the execution of a triangle counting algorithm. Especially in social networks,

the triangle motif has been studied extensively.

3.3.4 Clique Structure (Kn)

Finally, we index clique structures shown in Figure 3.1-(g) and (h). A clique in graph

G = (V,E) is a subset of the vertex set (i.e., C ⊆ V ) such that there are edges

between all node pairs (i.e., ∀(ci, cj) ∈ C, ∃e(ci,cj) ∈ E, when i 6= j).

We index all maximal clique structures (that has more than three nodes) in

the graph using complete bipartite structures as in Figure 3.5. We first get the set



25

INPUT: K from Alg.2 in Figure 3.3

Let G = (V,E); C ← φ

for (each k(m,n) ∈ K )
for (each a ∈ k(m,n))
findCliques({a}, k(m,n) − {a})

FUNCTION findCliques(L1, L2)
if (|L2| = 0 and |L1| > 3)
C ← C ∪ c(L1)

else
for (each b ∈ L2)
if (∃e(b,v) ∀v ∈ L1)
L∗ ← L2 ∩ nsi where s(b,nsi) ∈ S
findCliques(L1 ∪ b, L∗)

Figure 3.5: Alg. 4 - Clique Structure Indexing

of nodes from each complete bipartite k(m,n) and look for cliques that are formed by

those nodes. Note that, any clique larger than three nodes in the graph G will be

indexed as multiple bipartite structures. Hence, we do not need to consider all nodes

in the graph when indexing maximal clique structures. The clique search algorithm

works recursively on each node from the k(m,n) as the pivot node in the set L1 and

considers other nodes as candidate nodes in the L2 set. The function, moves each

node from the set L2 to the set L1 if it is connected to all nodes in the set L1

and then recursively tries to grow the structure with remaining nodes as candidates.

When there are no more candidates to consider in the set L2 then a clique has been

identified. Note that, this algorithm is not optimal and better solutions for finding

all cliques are proposed in [17, 60].

This structure has been observed in many fields. For example, many problems

in computational biology can be solved by finding maximal or all cliques within the

graph [13]. Similarly, [61] models protein structure prediction as a problem of finding
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cliques in a graph whose vertices represent positions of subunits of the protein; [21]

finds a hierarchical partition of an electronic circuit into smaller subunits using cliques;

and [59] uses cliques to describe chemicals in a chemical database that have a high

degree of similarity with a target structure.

3.4 Evaluation on Internet Topologies

In this section, we use router level Internet topologies to analyze the structural graph

indexing approach.

3.4.1 Preliminaries

The need for accurate Internet topology samples has increased over the last decade.

Sample maps provide an understanding of the global topology helps developing pro-

tocols and applications that can adapt to the underlying network. Furthermore,

router-level Internet maps are useful to analyze the topological characteristics of the

Internet and to design topology generators that can produce Internet-like synthetic

network topologies for simulation studies [32]. The confidentiality of Internet Service

Provider topologies faces the research community to use other ways to collect Internet

topologies. Several research groups and institutions have developed various tools and

methodologies [2, 6, 50, 63, 69] to collect the required topology information from the

Internet. These measurement studies utilize the Internet debugging tool, traceroute,

or its variants to collect a large number of path traces from a set of vantage points.

Nonetheless, constructing a router level Internet Topology map using tracer-

oute is not a straightforward process. Some routers don’t respond to the traceroute

probes and are called unresponsive routers. They are denoted by a ‘*’, instead of an
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IP address, in a traceroute output. An unresponsive router may appear in several

path traces. Each occurrence of ‘*’ needs to be treated as a potentially different

router. Therefore, there is a need to identify unresponsive nodes that are caused by

the same router to be able to accurately construct the underlying network.

For instance, Figure 3.6 presents the effect of unresponsive routers on a sam-

pled network. In the topology in Figure 3.6-(a), we assume that routers H, K and N

are unresponsive routers. When we run traceroute queries between vantage points,

represented as d, e, and f in Figure 3.6-(a), the collected path traces are as follows

d - * - L - S - e

d - * - A - W - * - f

e - S - L - * - d

e - S - U - * - C - f

f - * - C - * - * - d

f - * - C - * - U - S - e

The collected path traces, will generate the topology shown in Figure 3.6-

(b), which is considerably different than the underlying topology in Figure 3.6-(a).

This demonstrates the significance of unresponsive router resolution to obtain more

accurate sample topologies.

Even a small number of unresponsive routers may considerably alter the ob-

served topology from the sampled network [39]. Based on the number of unresponsive

routers in the topology and the method of topology collection, there may be a huge

number of unresponsive nodes in the collected set of path traces. For example, daily

Internet topologies collected by iPlane infrastructure have more than 12M unrespon-
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Figure 3.6: Unresponsive Routers

sive nodes along with 400K known interfaces [5].

In [39], Gunes et al. determined different cases under which unresponsive

nodes appear. They identified that unresponsive routers cause parallel, clique-like,

bipartite-like, and star structures in observed topology. Then, they proposed a graph

based induction method to handle unresponsive routers within collected path traces.

The structural graph indexing proposed in this chapter can significantly facilitate the

graph based induction approach in resolving unresponsive routers.
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3.5 SGI on Unresponsive Router Resolution

In this section, we illustrate how our method can be applied to the router level Internet

Topology to resolve unresponsive routers.

3.5.1 Graph Transformation

In our experiments, we use iPlane datasets [50]. These datasets have two types of

nodes, namely known (i.e., the ones with an IP address) and unknown (i.e., unre-

sponsive). When there is an unresponsive router, it will appear as an asterisk in

the traceroute output. If multiple path traces pass through an unresponsive router

between routers with known IP address, there will be multiple parallel *-substrings

between these known nodes. As an example, in Figure 3.6-a, traceroute queries from

e to f will return path traces including *-substrings as (U, ∗1, C) and (U, ∗2, C) re-

spectively. This may then result in two parallel *-substrings between U and C in

the resulting topology map as shown in Figure 3.6-b. In the example, there is a

*-substring that includes only one unresponsive router. A similar pattern can be

observed for *-substrings of larger lengths in a typical dataset.

In order to resolve this type of unresponsive routers, we need to detect the same

*-substrings (i.e., same length *-substrings with the same known nodes at the end

points) [39]. In our method, we ignore all nodes which do not have any unresponsive

neighbor, since they do have no effect for the resolution process. While reading the

traces from iPlane database, we identify the unresponsive routers which are in between

two known nodes. We read all *-substrings from the database and construct a new

graph Ḡ = (V̄ , Ē). We represent each *-substring as an edge e(a,b,l) where a is the

first known node, b is the second known node and l is the label of the edge representing
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Figure 3.7: Sample Transformation

the number of unresponsive nodes between a and b as in Figure 3.7. We add each

e(a, b, l) only once to our new graph Ḡ and add a and b to V̄ . This process can be

called as initial pruning (IP). Next, we sequentially index star, complete bipartite,

triangle and clique structures in graph Ḡ with SGI algorithm.

3.5.2 Structure Statistics

We present the indexing results for a dataset collected in 2006 and the average index-

ing results of 6 different datasets collected between 2006-2009 in Figures 3.8, 3.9, 3.10

and 3.11. For the dataset collected in 2006, we have 7,043,618 unresponsive nodes

and 172,532 known nodes.

When the length of *-substring increases (i.e. we have more unresponsive

nodes between two known node), the number of structures found within the topology

decreases. We present only the number of structures with less than 7 unresponsive

nodes as for higher lengths the number of structures found is almost zero. According

to our experiments, while the number of structures with 1 unresponsive node has not

changed considerably in consecutive years, there has been a significant increase in the

number of structures with three or more unresponsive routers.
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Figure 3.8: Parallel Structures in the Internet Topology
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Figure 3.9: Star Structures in the Internet Topology
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Figure 3.10: Complete Bipartite Structures in the Internet Topology
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#Unres. nodes #Resolved

IP 7,043,618 6,769,486
Clique 274,132 628

Bipartite 273,504 92,121
Star 181,383 78,214
Final 103,169 6,940,449

Table 3.1: SGI for Resolving Unresponsive Routers in the iPlane Data-set

3.5.3 Resolution Results

We have 7,043,618 unresponsive nodes in the initial data. We first resolve the unre-

sponsive nodes between two known nodes. Then we use the SGI algorithm to index

the structures and our resolution algorithms presented in Chapter 4 unresponsive

nodes. Starting from the maximum clique, we resolve all unresponsive nodes within

the clique and triangle structures. Then, we resolve unresponsive nodes within the

complete bipartite and star structures. The number of resolved unresponsive nodes

at each step given in Table 3.1. Finally, using SGI, we resolve more than 98 percent

of unresponsive nodes.

3.6 Observations

After applying our Structural Graph Indexing (SGI) approach to resolve the unre-

sponsive routers in the Internet topology collected by iPlane [50], we made two main

observations. First of all, the number of unresponsive nodes resolved during the clique

resolution step is very low despite the high complexity of clique indexing. Hence, we

decided to use triangle resolution instead of clique resolution and then we added the

triangle indexing and resolution modules to our system. Secondly, we realized that re-

solving unresponsive routers without identifying the IP alias pairs significantly affects
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the final graph. Therefore, in Cheleby, we perform the unresponsive router resolution

step after identifying the IP alias pairs.
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Chapter 4

Cheleby: An Internet Topology

Mapping System

In this part, we present Cheleby, an Internet topology mapping system that pro-

vides insight into the Internet topology by taking daily snapshots of the underlying

networks. The system utilizes efficient algorithms to process large scale data-sets col-

lected from distributed vantage points and provides accurate topology graphs at link

layer. Incorporating enhanced resolution algorithms, Cheleby provides comprehen-

sive topology maps. In this thesis, we designed and developed topology construction

part of the Cheleby system. Although the topology collection and sampling parts are

beyond the scope of this thesis, we give an overview of Cheleby’s topology sampling

and collection steps as it significantly affects the work done in topology construction

part and the final topology generated by topology construction phase. Additionally,

presenting the Cheleby’s topology sampling and collection strategies and then our

approach facilitates and improves the presentation of the Cheleby system.
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4.1 Topology Sampling

In order to sample the underlying topology of the Internet, we collect a large number

of path traces from geographically diverse vantage points towards all /24 subnets

in the Regional Internet Registries (RIR). An important issue affecting accuracy of

collected path samples is that certain traffic engineering practices for load balancing

may cause traceroute to return IP addresses that do not correspond to a real end-

to-end path in the Internet. We utilize Paris traceroute, which fixes flow identifiers

so that flow-identifier based load balancing routers will choose the same next hop

for probe packets toward the same destination [12]. Moreover, we perform ICMP

based querying as it elicits more responses than other probing approaches [42]. In

the following, we describe major steps of Cheleby regarding topology sampling.

4.1.1 Destination List Generation

In order to probe each active /24 subnetwork range, we obtain RIR records from

http://www.cidr-report.org/as2.0/as-ms-prefixes.txt. The list provides ad-

vertisements and actual RIR allocations for each AS. We divide each subnet adver-

tisement into a /24 subnetwork (e.g., A.B.C.0/24) and pick first allocable IP address

as the probing destination (i.e., A.B.C.1). If a specific range is smaller than /24,

then we pick the first allocable IP address in the range as the destination. These

IP addresses are divided into blocks of approximately 1,024 destinations that will

be probed by monitors. Note that an AS may be divided into several blocks or a

destination block file may contain multiple ASes. At the end of this process, we have

3,460 destination blocks, i.e., 3.54M destination IP addresses.
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4.1.2 Task Assignment to Monitors

In order to probe destinations from geographically diverse vantage points, we utilize

PlanetLab [7] nodes around the world. Among ∼1000 nodes only ∼600 of them

were good to be utilized during our experiment. As ∼100 of good monitors did

not function well with the Paris traceroute, we could utilize ∼500 nodes during our

topology collection. We divided these nodes into 7 teams based on their geographic

locations (i.e., 1: North-West America, 2: North-Central America, 3: North-East

America, 4: South America, 5: Western Europe, 6: Eastern Europe + Africa + West

Asia, and 7: East Asia + Australia).

Cheleby dynamically assigns one of the available monitors from each team to

probe destination blocks. Each block is probed by only one monitor at a time and

overall by 7 monitors. Preventing concurrent probing of a destination IP address

eliminates the possibility of a denial of service attack on the destination.

Each monitor is set to probe four destination blocks in parallel to reduce the

overall round completion time. Each of the four monitor processes work independent

of others. These processes are marked as idle, busy, or inactive. All processes in a

monitor are inactivated when one of them returns its data in less than two minutes

as this indicates a problem with the probing. They remain inactive for a period (i.e.,

4 hours) before becoming idle and getting a new job. Moreover, monitors are ranked

based on their task completion averages and Cheleby selects the top idle process from

a team to assign a new destination block.

Probing of a monitor is terminated if it cannot complete its task within a period

(i.e., 2 hours). In this case the monitor is penalized with a reduction in its ranking

and brought to the idle state. The partially traced destination block is also added to

the non-probed list for another trial by another monitor in the same team. If the new
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monitor, which reverses the order of destination IP addresses before probing, is also

unable to complete probing in time, then the destination block is marked as partially

completed and both of the partial traces are added to the database.

4.1.3 Probing Overhead Reduction

As the volume of active measurement practices increased in time, several researchers

indicated the impact and overhead of active probing on the network and presented

approaches to reduce the volume of unnecessary/redundant probes in measurement

studies. To this end, the Doubletree algorithm prunes redundant probes to nodes

that are close to the vantage point and to the destination since traces from a vantage

point yield tree-like structures [25]. Similarly, AROMA analyzes the convergence of

path traces to reduce number of probes in discovering network topology [48].

In Cheleby, we utilized a similar approach to reduce the number of probes. We

reduce intra-monitor redundancy by performing partial traces to some destination IP

addresses. Once we have a full trace to an IP address in an AS, we start successive

traces from the hop distance hi of the ingress router (i.e., hop distance of the last IP

address in the trace that did not belonging to the AS). If the first IP of a new trace

has not appeared at the same hop distance hj in any of the earlier full traces to the

AS, then we complete the trace by performing traceroute with the same flow-ID as

the partial trace while limiting max hop to hj . Otherwise, we do not complete the

trace.

Additionally, to reduce inter-monitor redundant probing, a destination IP is

probed by only one monitor of a team. Since the monitors in the same team are

geographically close to each other, we expect their contribution to identify a new

link/node to be small. Moreover, we are in the process of identifying ingress points
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Figure 4.1: Topology Construction

of ASes and dynamically establishing teams for each destination AS so that we have

exactly one monitor probing through each ingress point of an AS.

4.2 Topology Construction

After collecting topology data, we need to process this raw data to obtain the under-

lying network topology. In Internet topology construction studies, there are several

challenges, namely, unknown router resolution, identification of IP aliases and un-

derlying subnets. As we mentioned in Chapter 2,there are several research groups

working on these problems. Despite several approaches proposing solutions for one

of the these issues, no study considers all these challenges together and proposes an

approach to overcome these issues altogether. In Cheleby, first we analyze all of these

issues and the relation between them. After our initial experiments on iPlane topol-

ogy datasets, we found out that in order to resolve unresponsive routers within the

Internet topology we first need to identify the IP alias pairs in the topology. More-

over, to reduce the computational complexity, we should infer the underlying subnets

before identifying the alias pairs. Therefore, we (1) filter faulty traces, (2) infer un-

derlying physical subnets among IP addresses, (3) resolve IP addresses belonging to

the same router, and (4) resolve unresponsive routers as shown in Figure 4.1.
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The accuracy and the completeness of these tasks may significantly affect the

accuracy of the resulting topology maps [37, 73]. Moreover, when handling these

tasks, one needs to make decisions based on the observations to infer the underlying

topology. As the earlier decisions effect the later ones, obtaining the most likely

topology under various conditions has been shown to be NP-hard [9]. Finally, these

resolution tasks especially are challenging when large scale topologies of millions of

nodes are processed. In this section, we analyze each of these tasks and present the

algorithms that we utilized to handle them efficiently even in very large topologies

consisting around 2.5M nodes and about 5M edges.

4.2.1 Initial Pruning

In this step we filter faulty traces, resolve the unresponsive routers in between the

same known routers, and constitute our data structures from the raw data.

As path traces contain anomalies such as routing loops, we first prune raw

path traces. The pruning breaks path traces with a loop (e.g., IPA, IPB, IPC , IPD,

IPE, IPC , IPF , IPG) into three pieces based on the repeated IP address (i.e., IPC)

and utilize the first part (i.e., IPA, IPB, IPC) and the last part (i.e., IPC , IPF , IPG)

of the trace in the remainder of processing. In collected path traces, 772K (%3.45) of

path traces contain routing loops among which 143K has multiple loops. Moreover,

we observed border firewalls that filter ICMP packets from/to a network domain and

occasionally respond with their IP address. However, the hop distance of these IP

addresses are not consistent. Hence, we filter any IP address that appears at the end

of trace after 3 unresponsive nodes.

Then, we build initial network graph by parsing filtered path traces. During

parsing, we resolve unknown nodes that are between the same set of known nodes.
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Figure 4.2: Sample Transformation

In order to resolve this type of unresponsive router, we need to detect the same

*-substrings (i.e., same length *-substrings with the same known nodes at the end

points). While reading the traces from the raw data, we identify the unresponsive

routers between two known nodes. We read all *-substrings from the database and

construct a new graph Ḡ = (V̄ , Ē). We represent each *-substring as an edge e(a,b,l)

where a is the first known node, b is the second known node and l is the label

of the edge representing the number of unresponsive nodes between a and b as in

Figure 4.2. We add each e(a, b, l) only once to our new graph Ḡ. In the successive

resolution tasks, we use the graph Ḡ. Performing this unresponsive router resolution

step during graph construction reduces the number of unknown nodes by %78.71 on

average. Additionally, we add all observed unique known and unresponsive routers

to V̄ and we constitute a neighbor set for each router.

This process can be called initial pruning (IP). After this step, we sequentially

infer subnets, resolve IP alias pairs, and identify the unresponsive routers by first

indexing star, complete bipartite, and triangle structures with the SGI algorithm

presented in Section 3.1, and then resolve unresponsive routers within these structures

with our graph based induction algorithms.

Table 4.1 presents the average statistics of (1) all traces, (2) partial traces, (3)
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All Traces 22.36M

Partial Traces 35.4%
Saved Probes 66.15M

Unknown Nodes 7.21
Known Nodes 1.18

Table 4.1: Probing Overhead and Initial Unresponsive Router Reduction

saved probes by using partial traces, (4) Unknown nodes, i.e., ’*’, and (5) Known

nodes, i.e., IP addresses, for the analyzed data sets.

4.2.2 Subnet Inference

The first task after building an initial network graph is the identification of the under-

lying physical subnets, i.e., link level connectivity, among IP addresses in the collected

topology [38]. The goal in subnet resolution is to identify multiple links that appear to

be separate and combine them to represent their corresponding single hop connection

medium (i.e., multi-access link). Subnet resolution also finds missing links between

IP addresses that fall in the same subnet range but were not observed in path traces.

The successful inclusion of subnet relations among the routers yields topology maps

that are closer, at the link layer, to the sampled segments of the Internet.

Cheleby, enhances the subnet resolution approach presented in [38] by utilizing

the distance preservation condition over multiple vantage points. The SubNet Inferrer

module (SNI) observes distances of all IP addresses per vantage point and determines

the IP address ranges that have similar distances to the vantage points. Unlike the

initial approach in [38], we only allow one IP address to be closer to each of the

vantage points. As the number of vantage points is increased, the distance condition

can more accurately filter false subnets. After identifying subnets, we add edges

between all routers of observed subnets. This process helps us to identify the missing
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Subnet Size /24 /25 /26 /27 /28 /29 /30 /31

Count 1 4 34 485 6,381 20,602 11,202 2,960

Completeness %28 %25 %23 %23 %25 %36 %100 %100

Table 4.2: Average Subnet Statistics

edges and neighborhood relations between IP addresses that fall in the same subnet

range but were not observed in path traces.

Table 4.2 presents averages of identified subnets and their completeness for

subnets that had %20 of their IP addresses present in path traces. We present the

detailed results in Chapter 5. Only about 15% of IP addresses are assigned to a

subnet. The main reason for this small ratio is because we did not explore other IP

addresses of candidate subnets.

4.2.3 IP Alias Resolution

After inferring underlying subnets, Cheleby resolves IP aliases. Since routers have

multiple interfaces with different IP addresses, different path traces may include

routers with different IP addresses. Hence, we need to identify and group IP ad-

dresses belonging to the same router. Without IP alias resolution, the resulting

topology map may be significantly different from the actual topology [37].

Gunes et al. presented the Analytic and Probe-based Alias Resolver (APAR)

in [40]. Given a set of path traces, the analytical component utilizes the common

 !"#$#%&#%

#'

 !"#$ !"#$#%&&

(")*$#'&

Same subnet

Equal or Alias

Known subnet

Figure 4.3: Analytical and Probe-based Alias Resolver v2 (APARv2)
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Alias Sets IPs in Alias Sets

23,266 75,019

Table 4.3: Alias Resolution Averages

IP address assignment scheme (see RFC 2050) to infer IP aliases. It uses inferred

subnets to align symmetric segments of different path traces and identifies alias pairs

among involved IP addresses. Path asymmetry is a commonly observed characteristic

in the Internet. However, APAR does not require complete path symmetry and relies

on symmetric path segments to resolve aliases.

We developed APARv2,an enhanced version of APAR by eliminating path

queries as shown in Figure 4.3,i.e., the most significant improvement of APARv2

over APAR is reduction in required storage of path traces. In APARv2, we process

all subnet IP address pairs vp and vr and determine candidate alias pairs. Then,

we verify whether our candidate alias pair (i.e., vp and Prev(vr)) has a common

neighbor (i.e., Prev(Prev(vr)) and Next(vp)) as an alias or as in another subnet

relation (i.e., Prev(vr) and Next(vp)). If common neighbor condition is satisfied, we

analyze whether our candidate alias pair appeared in the same trace or not. In order

to ensure the accuracy condition without storing all path traces, we store the conflict

sets, i.e., set of traces an IP address appeared in, for each known node. Moreover,

we are in the process of adding probing component of APAR and utilizing ally [14]

as the decisions are made into Cheleby.

Table 4.3 presents average alias resolution statistics for collected datasets.

However, only %7 of IP addresses is in any alias set. This value was low as we did

not include IP-mates (/30 or /31 pair of the observed IP address) as in Archipelago

and iPlane systems. Hence, we are including such IP-mate probing component into

Cheleby.
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4.2.4 Unresponsive Router Resolution

Unresponsive routers are routers that are passive to measurement probes and are rep-

resented by a ‘*’ in a traceroute output. Since a router may appear as a ‘*’ in multiple

traceroute outputs, we need to identify ‘*’s (i.e., unresponsive nodes) that belong to

the same router. Even a small number of unresponsive routers may significantly dis-

tort the constructed topology [41]. Moreover, the mere volume of unresponsive nodes

in the collected data set introduces additional challenges in building an efficient so-

lution.

In Cheleby, we enhance the Graph Based Induction (GBI) technique with

Structural Graph Indexing to resolve unresponsive routers [41]. In order to define

the induction approach, we first analyze the nature of unresponsive routers and iden-

tify different types of unresponsiveness. We mainly divide unresponsive routers into

two categories: (1) permanent: routers configured to ignore traceroute queries caus-

ing them to be unresponsive in all trace outputs, (2) temporary: routers configured to

be either unresponsive or responsive depending on ICMP rate limiting or congestion.

We propose efficient algorithms in order to resolve both types by ensuring the trace

preservation condition.

Definition (Trace Preservation Condition): Trace preservation condition

serves as an accuracy condition during topology construction. In the context of

unresponsive router resolution, it states that if (∗e, ∗f) ∈ trace(vi, vj), then ∗e and

∗f cannot be in the same alias set, i.e., they cannot belong to the same unresponsive

router.

This condition arises from the fact that there should be no routing loops in

collected path traces. Even though there are traces containing loops, these are due

to temporary errors. We filter these erroneous traces during the initial pruning step.
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(a) Triangle Resolution

(b) Bipartite Resolution

(c) Star Resolution

Figure 4.4: Permanent Unresponsive Router Resolutions

First, we resolve the temporary unresponsive routers since we can match the

resolved unresponsive router with an IP address. Such routers may appear as a known

node in some path traces and may appear as a ‘*’ in others. For instance, an ICMP

rate limiting router c along with an unresponsive router may cause occurrences of

related substrings in the form of (. . . , a, c, ∗3, b, . . .) and (. . . , a, ∗1, ∗2, b, . . .) in different

traceroute outputs. In this case, we resolve ∗1 to c and ∗2 to ∗3.

After resolving temporary unresponsive routers, we resolve the permanent un-

responsive routers. By examining a number of topology maps that are constructed
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INPUT: T from Alg.3 in Figure 3.4

Let G = (V,E)

for (each t(a,b,c,un) ∈ T )
conflictSet← φ

for (each uni ∈ un)
if ((conflictSet ∩ uni.conflictSet) 6= φ)
break

end
end
mergeNodes(un)

end

Figure 4.5: Alg.4 - Triangle Resolution

from traceroute data with unresponsive routers, we identified a number of graph

structures (i.e., parallel, star, complete-bipartite, and clique) that are formed among

unresponsive nodes and their known neighbors. We detect these structures with our

SGI algorithm and reduce the unresponsive nodes (i.e., the occurrences of ‘*’s) into

their corresponding unresponsive routers as in Figure 4.4 with our efficient algorithms

in Figures 4.5, 4.6, and 4.7.

All in all, in Cheleby, we utilized our structural graph indexer (SGI) [46], which

helps improve subsequent graph queries in the graph database, to reduce the search

time of GBI. SGI indexes maximal graphs that match the structure formulation within

the original graph in a consecutive manner as described in 3. SGI first identifies star

structures, then complete-bipartites, triangles and finally clique structures from the

preceding ones. In our experiments, we realized that the number of cliques with more

than 3 nodes is minimal and hence we removed clique indexing from Cheleby. After

indexing structures with SGI, Cheleby resolves corresponding unresponsive routers

using GBI obeying the trace preservation condition. Moreover, if all the unresponsive
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INPUT: K from Alg.2 in Figure 3.3

Let G = (V,E)

for (each k(ls,rs,un) ∈ K)
conflictSet← φ

for (each uni ∈ un)
if ((conflictSet ∩ uni.conflictSet) 6= φ)
resMaxBipSubSet(ls, rs, un)
break

end
end
mergeNodes(un)

end

Figure 4.6: Alg.5 - Bipartite Resolution

INPUT: S from Alg.1 in Figure 3.2

Let G = (V,E)

for (each s(r,l,un) ∈ S)
conflictSet← φ

for (each uni ∈ un)
if ((conflictSet ∩ uni.conflictSet) 6= φ)
resolveMaxStarSubSet(r, l, un)
break

end
end
mergeNodes(un)

end

Figure 4.7: Alg.6 - Star Resolution
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routers in a complite bipartite or a star structire cannot be reduced into one node,

we find maximal mergeable subset of these unresponsive routers.

After resolving unresponsive routers with Cheleby, we have topologies where

%14.76 of the routers are unresponsive in the final graphs, which agrees with earlier

observations [42].
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Chapter 5

Experimental Results

Cheleby performed 8 rounds of data collection using around 500 available PlanetLab

nodes on the generated destination blocks. After, collecting the raw topology data, we

process those raw data with topology constructor module of Cheleby. First, we present

some statistical results on topology collection process as the topology collection phase

significantly affects the later phases.

5.1 Topology Collection

Table 5.1 presents the averages of (1) the number of monitors, (2) the number of

completed destination blocks, (3) average block completion times, and (4) total run

time for each team. Initially we divided the regions to have a balanced number of

monitors in each team. However, teams 5,6, and 7 were considerably behind others.

Hence, we increased their monitors by adjusting geographic clusters.

As seen in the table, on average 19.26 of the 3,460 destination blocks were

not completed in the allowed time of 2 hours even after the second trial. Team 4

(South America) had the lowest probe completion with an average of 35.72 incom-
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Team Team1 Team2 Team3 Team4 Team Team6 Team7

Monitors 56.63 53.88 55.50 56.75 77.25 73.63 76.25
Comp. Dest Blk 3,453 3,430 3,436 3,424 3,447 3,448 3,448

Avg. Blk. Cmp. Time(s) 1,476 1,376 1,586 1,650 1,764 1,764 1,566
Run Time(h) 8.53 8.18 9.15 9.32 7.32 7.68 6.54

Table 5.1: Average Team Statistics

plete destination blocks. On average, 36.67% of blocks were completed in the second

trial which is included in the overall completion numbers. Team 5 (Western Europe)

and Team 6 (Eastern Europe + Africa + West Asia) were slowest with an average

of 1,764 seconds for a destination block. This is also apparent in Figure 5.1, which

shows destination block probing times of a single run. However, Teams 5, 6, and 7

were fastest in probing all destination blocks due to higher number of monitors in

these teams. Finally, in Figure 5.1, we observe that there is a group of destination

blocks that are complete in around 700 seconds independent of team averages. These

cases often happen when the destination block is in the same location as the probing

team.
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Figure 5.2 displays completion statistics for a data set. As seen in Figure 5.2-a,

while most of the monitors completed 40 to 80 destination blocks, there were outliers

that either outperformed or fell behind others. Moreover, as seen in Figure 5.2-b,

average probe completion times increased in general with lower rankings as expected.

In general, the outliers that were considerably below the average curve were faulty

monitors that either returned responses in few minutes, whose data was removed and

set inactive for certain time, (e.g., Team 2 node at 55 and Team 5 node at 3) or

became available for part of the data collection (e.g., Team 5 node at 75 and three

nodes round 3). On the other hand, outliers well above the average line received

a bad destination, i.e., AS regions that were not very responsive, causing jumps in

completion time.

5.2 General Statistics and Analysis

In Cheleby, we aim to construct a link-level Internet backbone topology map as

accurately and completely as possible. By using the topology construction steps of

our system, we try to ensure the accuracy of the map. For completeness, we must

observe as many nodes and edges as possible during the topology collection phase.

Here, we draw the number of vantage point versus the number of nodes, known nodes,

unresponsive nodes, and edges graphs in order to show the effect of the number of

vantage points on the completeness of the resulting map.

Figure 5.3 presents the relation between the number of nodes and the number

of vantage points used. The number of nodes increases with the number of vantage

points increases, but the rate of growth decreases as expected. In the following figures,

we analyze whether the increase in the number of nodes stems from an increase in

known nodes or an increase in unresponsive nodes.
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Figure 5.3: The Number of Nodes After Each Vantage Point

Figure 5.4: The Number of Known Nodes After Each Vantage Point



57

Figure 5.5: The Number of Unresponsive Nodes After Each Vantage Point

Figure 5.6: The Number of Edges After Each Vantage Point
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Figure 5.7: The Number of New Known Nodes After Each Vantage Point

Figure 5.8: The Number of New Unresponsive Nodes After Each Vantage Point
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Figure 5.9: The Number of New Edges After Each Vantage Point

Figure 5.4 shows the relation between the number of known nodes and the

number of vantage points used. The number of known nodes increases while the

number of vantage points increases,but the decrease in the rate of growth is more

obvious after around 150 vantage points.

Figure 5.5 shows the relation between the number of unresponsive nodes and

the number of vantage points used. The number of unresponsive nodes increases

while the number of vantage points increases more linearly.

In Figures 5.7, 5.8, and 5.9, we analyze the number of newly added known

nodes, unresponsive nodes, and edges in order to show the effect of the number

of vantage points on the completeness of the resulted graph. As the number of

vantage points increases, there is always an increase in the number of newly observed

unresponsive routers. However, we observed just a few new known nodes after the

hundred vantage points. There is an increase in the number of newly observed edges
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Dataset Subnet Size /24 /25 /26 /27 /28 /29 /30 /31

1 Count 0 3 37 500 6,439 20,691 11,255 2,939

2 Count 1 5 32 500 6,334 20,587 11,267 3,011

3 Count 0 7 31 469 6,316 20,428 11,170 2,984

4 Count 0 6 33 459 6,354 20,546 11,233 2,953

5 Count 0 3 40 498 6,393 20,579 11,206 2,908

6 Count 1 3 27 499 6,478 20,793 11,177 2,971

7 Count 0 3 36 465 6,308 20,655 11,244 2,957

8 Count 1 4 37 490 6,426 20,536 11,060 2,955

Table 5.2: The Number of Observed Subnets

while the number of vantage points increases. Considerable amount of newly added

edges are the contribution of the newly observed unresponsive routers.

5.3 Subnet Resolution

After the initial pruning step, we inferred the underlying subnets. Table 5.2 and

Table 5.3 present the identified subnets and their completeness for subnets that had

%20 of their IP addresses present in traces for 8 different datasets. As a future work,

we explore other IP addresses of candidate subnets. Thus, we are adding a probing

module into SNI that will probe subnets that have less than one tenth of their IP

addresses present in the data set. Additionally, we will merge all data sets in order to

increase the number of observed edges and routers which, in turn, may significantly

improve the number and the completeness of the observed subnets.

5.4 Alias Resolution

Table 5.4 presents alias resolution statistics for collected datasets. However, only

about %7 of IP addresses is in any alias set in a dataset. This value was low as we
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Dataset Subnet Size /24 /25 /26 /27 /28 /29 /30 /31

1 Completeness %22 %23 %23 %25 %36 %100 %100

2 Completeness %26 %23 %24 %24 %25 %36 %100 %100

3 Completeness %24 %24 %23 %25 %36 %100 %100

4 Completeness %24 %23 %23 %24 %36 %100 %100

5 Completeness %27 %23 %24 %25 %36 %100 %100

6 Completeness %29 %27 %23 %23 %24 %36 %100 %100

7 Completeness %24 %23 %23 %25 %36 %100 %100

8 Completeness %28 %25 %23 %23 %25 %36 %100 %100

Table 5.3: Subnet Completeness Statistics

did not include IP-mates (/30 or /31 pair of the observed IP address) as in Archipelago

and iPlane. Hence, we are including such IP-mate probing component into APARv2.

Since we resolve alias IP pairs by using observed subnets, IP alias aproach will also

be improved when we enhance our inferring subnets aproach.

5.5 Unresponsive Router Resolution

After the alias resolution step, we resolve the unresponsive routers in the datasets.

Figure 5.10 presents the number of unresponsive router substrings with different

lengths. For example, an unresponsive router substring with length 3 is a sub-trace

of (a,*,*,*,b). As we expect, while the length of unresponsive routers increases, the

number of unresponsive routers with that length increases.

Dataset Alias Sets IPs in Alias Sets
1 23,467 75,851
2 23,374 75,512
3 22,218 74,124
4 22,984 74,467
5 22,964 75,943
6 23,846 74,912
7 23,146 73,580
8 24,128 75,764

Table 5.4: Alias Resolution Statistics
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Figure 5.11 presents the initial and final number of unresponsive routers. Ac-

cording to this figure, there are around 7M unresponsive routers in the raw data,

while after the resolution this number is just around 250K, i.e., around 96% of the

unresponsive nodes in the raw data is resolved. Additionally, in the final data %17.24

of the routers are unresponsive, which agrees with earlier observations [42].

Figure 5.12 presents the initial and final number of unresponsive routers for

different unresponsive router lengths. According to this figure, while the substring

length increases, the ratio of resolved unresponsive routers in this substring decreases.

This is because in bipartite, and triangle resolution steps, we can just resolve the un-

responsive router substrings with length 1. Thus, in longer substrings, the resolution

ratio is lower.

Figure 5.13 shows the percentage of resolved unresponsive routers after each

resolution step. In the star resolution step, we can resolve unresponsive router with

any length. Hence, according to the table, the number of resolved unresponsive

routers is the most in star resolution step. Since the number of triangle structures is

low in datasets, the number of resolved unresponsive routers in the triangle step is

small.

Table 5.5 shows the number of resolved unresponsive routers after each reso-

lution step in more detail. Initially, there are around 7M unresponsive routers in a

dataset. Initial pruning, rate limiting, triangle, complete bipartite, and star resolution

steps solves around 50K, 2.5K, 145K, and 610K respectively. This yields topologies

where 17.24% of the routers are unresponsive.



63

Figure 5.10: Number of Unresponsive Routers with Different Lengths

Figure 5.11: Initial vs. Final Unresponsive Routers

Initial I. Pruner Rate Lim. Triangle Bipartite Star Final *s
7,012,413 5,974,253 46,905 3,440 136,167 601,635 250,013
7,513,030 6,442,780 52,464 2,507 152,963 611,881 250,435
6,941,027 5,924,319 48,563 1,878 134,621 593,078 238,568
7,427,020 6,324,756 57,192 4,401 151,881 635,052 253,738
7,098,747 6,032,142 50,470 2,416 140,044 620,858 252,817
7,614,138 6,489,008 52,669 3,384 150,958 650,065 268,054
7,071,300 6,023,207 49,492 2,463 139,697 607,481 248,960
6,985,401 5,891,538 52,480 2,372 144,709 633,578 260,724

Table 5.5: Unresponsive Router Resolution Statistics
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Figure 5.12: Initial vs. Final Unresponsive Routers according to UR length

Figure 5.13: Percentages of Resolved Unresponsive Routers after Each Step
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Chapter 6

Conclusions and Future Work

Due to the tremendous growth in Internet’s importance, many groups, organizations,

and governments have become interested in understanding various characteristics of

the Internet for commercial, social, and technical reasons. Network research commu-

nity depends on such Internet mapping systems to understand characteristics of the

Internet and develop new protocols and services. Government agencies are interested

in Internet measurements to protect and improve the national cyber infrastructure.

Moreover, new network paradigms such as overlay networks require knowledge of the

underlying network topology. The proposed Cheleby will enable research community

to conduct topography analyses and study large-scale characteristics of the Internet

as we plan to publicly offer the resulting system and its data sets.

In this thesis, we presented an Internet topology constructor system, which

takes the raw Internet topology data and by using efficient algorithms it gives router

level and link-level maps which are ready to visualize. In future work, we will update

our destination list dynamically by adding observed IPs and missing IP addresses of

candidate subnets observed by our system. We will replace non-observed IP addresses
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in destination blocks with responsive IPs that have a common subnetwork prefix in

earlier data sets. Additionally, we will automize our system so that it will automati-

cally collect the raw data from Internet and then, add the newly observed nodes and

edges to our system. Thus, we will give a more complete graph. However, the number

of nodes and edges will increase day by day and handling the whole Internet topology

would be harder. Hence, we will divide the Internet topology data according to ASes

or geographically, handle each part separetely. Next, we will merge all parts again to

obtain the whole Internet topology. Moreover, we will prepare a graphical interface

to our SGI tool and, release it as public complex network analyzer tool. Finally, we

plan to enhance the Cheleby mapping system with data from other sources (e.g., AS

information, DNS information, and BGP routes) to provide topology maps at varying

levels (e.g., AS level, PoP level, router level, and link level).

Overall, the Cheleby Internet mapping system will help to (i) provide a finer

grade Internet topologies at link level, (ii) better understand the characteristics of the

router level Internet, (iii) capture the dynamics of Internet topology, (iv) fine-tune

existing services such as content distribution and bottleneck identification, (v) and

guide the development of the next generation Internet.
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